ارزیابی مدل شبکه های بیزین در پیش بینی ماهانل سطح آب زیرزمینی (مطالعۀ موردی: آبخوان بیرجند)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری منابع آب، پردیس ابوریحان، دانشگاه تهران

2 استادیار گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران

چکیده

اساس برنامه‌ریزی‌های منابع آب بر پایۀ حجم آب قابل استحصال در آبخوان است و برآورد دقیق این حجم از آب زیرزمینی، کمک شایانی به توسعه می‌کند. در این مطالعه، از مدل‌های بیزین با استفاده از دو ساختار خوشه‌بندی و صریح برای شبیه‌سازی سطح آب زیرزمینی آبخوان بیرجند استفاده شد. پنج متغیر تغذیۀ آبخوان، سطح ایستابی، دما، تبخیر و برداشت از آب زیرزمینی در ماه قبل به‌عنوان متغیرهای ورودی به شبکۀ بیزین و سطح آب زیرزمینی در ماه کنونی، به‌عنوان متغیر خروجی آزموده شد. در سناریوی صریح تحلیل و آموزش داده‌های ورودی بر اساس پیوستگی و با لحاظ‌کردن عدم قطعیت حاکم بر پارامترها انجام و در سناریوی خوشه‌بندی بر اساس شاخص‌های اعتبار سنجی تعداد خوشه‌بندی مناسب برای شبیه‌سازی انتخاب و شبیه‌سازی انجام پذیرفت. نتایج نهایی نشان داد که شبکۀ بیزین در شبیه‌سازی سطح آب زیرزمینی تحت عدم قطعیت ابزار قوی بوده و متوسط ضریب تبیین برای 13 پیزومتر در آبخوان، 83/0 در حالت صریح و 56/0 در حالت خوشه‌بندی است. همچنین استفاده از ساختار صریح برای پیش‌بینی سطح آب زیرزمینی در هر پیزومتر آبخوان، می‌تواند با هم‌بستگی بیشتر به کار برده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Bayesian networks model in monthly groundwater level prediction (Case study: Birjand aquifer)

نویسندگان [English]

  • Hamid Kardan Moghadam 1
  • Abbas Roozbahani 2
1 PhD Student of Water Resources Engineering, Department of Irrigation and Drainage Engineering, College of Abouraihan, University of Tehran, Iran
2 Assistant Professor, Department of Irrigation and Drainage Engineering, College of Abouraihan, University of Tehran, Iran
چکیده [English]

The planning of water resources is based on the volume of water extracted from the aquifer and accurate estimate of this volume considerably helps to development. In this study, the Bayesian networks model using continues and clustering structures was used to simulate the groundwater level of Birjand aquifer. Bayesian networks was calibrated with five input variables of aquifer recharge, water table, temperature, evaporation as well as groundwater withdrawals in the previous month and the groundwater level in the current month as output variable. In continues and clustering scenarios, analysis and calibration of input data is performed based on continuity and uncertainty of variables and some validation indexes respectively and then groundwater level was simulated. The final results showed that the Bayesian network is a powerful tool for simulation of groundwater level under uncertainty and average correlation coefficient in 13 piezometers is 0.83 and 0.56 for continues and clustering structures, respectively. Also it shows that continues structure can be applied to predict the groundwater level with higher correlation.

کلیدواژه‌ها [English]

  • Aquifer
  • Clustering
  • simulation
  • Uncertainty
  • Validation
  1. محتشم، م. دهقانی، ا. اکبرپور، ا. مفتاح هلقی، م. اعتباری، ب (1389). پیش‌بینی سطح ایستابی با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: دشت بیرجند) مجله آبیاری و زهکشی. شماره 1. صفحات 1 تا 10.
  1. Ammar Kh, McKee M and Kaluarachchi (2011). Bayesian Method for Groundwater Quality Monitoring Network Analysis. J. Water Resource. Planning. Manage.137:51-61.
  2. Biondi D and De Luca, D.L (2012). A Bayesian approach for real-time flood forecasting. Physics and Chemistry of the Earth. 42–44 (2012):pp 91–97.
  3. Chung Y.W, (2008). Prediction water table fluctuation using artifical neural network, in partial fulfillment of the requirements for the degree of doctor of philosophy. University of Maryland: 185 pp.
  4. Davies D.L and Bouldin D.W (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1: 224–227.
  5. Emamgholizadeh S, Moslemi Kh and Karami G (2014). Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resource Manage. 28(15):5433–5446.
  6. Hantush M and Chaudhary A (2014). Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management. Journal of Hydrologic Engineering, ASCE, ISSN 1084- 0699/04014015 (14).
  7. Hugin, 2007. www.Hugin.com (Accessed May 2007).
  8. Kumar S and Singh S (2015). Forecasting Groundwater Level Using Hybrid Modelling Technique, Management of Natural Resources in a Changing Environment: 93-98.
  9. Lauritzen S. L(1996). Graphical models. Oxford: Clarendon press.
  10. Madadgar Sh and Moradkhani H (2014). Spatio-temporal drought forecasting within Bayesian networks. Journal of Hydrology.512: 134–146.
  11. Maiti S and Tiwari R.K (2014). A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ Earth Science 71:3147–3160.
  12. Moosavi V, Vafakhah M, Shir mohammadi B, Behnia N (2013). A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resource Management 27(5):1301–1321.
  13. Nash D and Hannah M (2011). Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices. Environmental Modelling & Software 26 (2011): 1079-1088.
  14. Rousseeuw P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20: 53–65.
  15. Sahoo S and Madan K.J (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeology Journal, 21 (8): 1865-1887.