عملکرد هیدرولوژیکی توسعه کم‌اثر مبتنی بر نفوذ تحت معیارهای طراحی مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران.

10.22059/jwim.2024.360802.1107

چکیده

شهرسازی موجب افزایش سطوح نفوذناپذیر و در نتیجه تولید رواناب بیش‌تر می‌شود. تولید رواناب بیش‌تر می­تواند خطر سیلاب را افزایش دهد. بنابراین استفاده از روش­های کنترل رواناب ضرورت پیدا می­کند. روش­های توسعه کم‌اثر از جمله روش­های نوین کنترل رواناب است. واحد زیست‌ماند یکی از روش­های توسعه کم‌اثر است که به‌دلیل کاهش قابل‌توجه حجم رواناب و افزایش نفوذ موردتوجه قرار گرفته است. با این‌حال عملکرد جامع واحد زیست‌ماند در مناطق مختلف و برای طراحی­های مختلف متفاوت است. در پژوهش حاضر عملکرد واحد زیست‌ماند تحت شرایط طراحی مختلف موردارزیابی قرار گرفت. هم‌چنین برای بررسی عملکرد واحد زیست‌ماند از مدل SWMM در مدل‌سازی منطقه موردمطالعه استفاده شد. نتایج پژوهش نشان داد که واحد زیست‌ماند امکان کاهش سیلاب و افزایش نفوذ را دارد. واحد زیست‌ماند موجب کاهش اوج رواناب خروجی از منطقه به مقدار 65 تا 25 درصد برای بارش با دوره­های بازگشت دو تا 20 ساله شد. نتایج هم‌چنین نشان داد که با افزایش ضخامت لایه سطحی واحد زیست‌ماند امکان کاهش بیش‌تر رواناب وجود دارد. افزایش هدایت هیدرولیکی اشباع لایه خاک واحد زیست‌ماند نیز موجب افزایش عملکرد این روش توسعه کم‌اثر می‌شود. پژوهش حاضر نشان می­دهد به‌کارگیری روش­های توسعه کم‌اثر مبتنی بر نفوذ (همچون واحد زیست‌ماند) می­تواند در بهبود شرایط هیدرولوژیکی مناطق شهری کمک‌کننده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrological Performance of the Infiltration Based Low Impact Development Under Different Design Criteria

نویسندگان [English]

  • milad mehri
  • S. Mehdy Hashemy Shahdany
  • saman Javadi
Water Engineering Department, Faculty of Agricultural Technology, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran.
چکیده [English]

Urbanization increases impervious areas and results in more runoff generation. More runoff generation can increase the risk of flooding. Therefore, it becomes necessary to use runoff control measures. Low impact development (LID) methods are among the runoff control measures. The bioretention cell is one of the low impact development methods that has been noticed due to the significant reduction in runoff volume and increase in infiltration. However, the overall performance of the bioretention cell varies in different areas and different designs. In the present study, the performance of bioretention cells was evaluated under different design conditions. Also, the SWMM model was used in the modeling of the study area to evaluate the performance of the bioretention cells. The results of the present study showed that the bioretention cells are capable of reducing flood and increasing infiltration. Bioretention cells reduced the peak discharge by 65 to 25 percent for rainfall with a return period of two to 20 years. The results also showed that by increasing the thickness of the surface layer of the bioretention cell, there would be even more runoff reduction. Increasing the saturated hydraulic conductivity of the soil layer of the bioretention cell also increases the performance of this low impact development method. The present study shows that the use of infiltration based low impact development methods, such as bioretention cell, can help in improving the hydrological conditions of urban areas.

کلیدواژه‌ها [English]

  • Bioretention cell
  • Stormwater management
  • SWMM model
  • Urban flood
  • Urban hydrology
  1. Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental research, 139, 3-10. 
  2. Davis, A. P. (2008). Field performance of bioretention: Hydrology impacts. Journal of Hydrologic Engineering, 13(2), 90-95. 
  3. Davis, A. P., Traver, R. G., Hunt, W. F., Lee, R., Brown, R. A., & Olszewski, J. M. (2012). Hydrologic performance of bioretention storm-water control measures. Journal of Hydrologic Engineering, 17(5), 604-614. 
  4. de Macedo, M. B., do Lago, C. A. F., & Mendiondo, E. M. (2019). Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Science of the Total Environment, 647, 923-931. 
  5. DeBusk, K., & Wynn, T. (2011). Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering, 137(9), 800-808. 
  6. Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development–A review. Science of the Total Environment, 607, 413-432. 
  7. Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1).
  8. Gülbaz, S., & Kazezyılmaz-Alhan, C. M. (2017). Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. Journal of Hydrologic Engineering, 22(1), D4016003.
  9. Hoffmann, G., Gardner, L., Espie, M., & Dunbar, J. (2020). Stormwater Management Guidebook (2nd ed.). Department of Energy and Environment.
  10. Huang, C.-L., Hsu, N.-S., Liu, H.-J., & Huang, Y.-H. (2018). Optimization of low impact development layout designs for megacity flood mitigation. Journal of hydrology, 564, 542-558. 
  11. Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., & Eubanks, P. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. Journal of Environmental Engineering, 134(5), 403-408.  
  12. Luo, P., Luo, M., Li, F., Qi, X., Huo, A., Wang, Z., He, B., Takara, K., Nover, D., & Wang, Y. (2022). Urban flood numerical simulation: Research, methods and future perspectives. Environmental modelling & software, 156, 105478.  
  13. Mani, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2019). A new framework for the optimal management of urban runoff with low-impact development stormwater control measures considering service-performance reduction. Journal of Hydroinformatics, 21(5), 727-744.  
  14. Movahedinia, M., Samani, J. M. V., Barakhasi, F., Taghvaeian, S., & Stepanian, R. (2019). Simulating the effects of low impact development approaches on urban flooding: a case study from Tehran, Iran. Water Science and Technology, 80(8), 1591-1600. 
  15. PWD, C. o. P. (2014). Stormwater Management Guidance Manual (Version 2.1 ed.). Philadelphia Water Department.
  16. Rossman, L., & Huber, W. (2016a). SWMM Reference Manual Volume I—Hydrology. United States Environmental Protection Agency.
  17. Rossman, L., & Huber, W. (2016b). SWMM Reference Manual Volume III—Water Quality United States Environmental Protection Agency.
  18. Roy-Poirier, A., Champagne, P., & Filion, Y. (2010). Review of bioretention system research and design: past, present, and future. Journal of Environmental Engineering, 136(9), 878-889.  
  19. Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275.  
  20. Swathi, V., Raju, K. S., & Singh, A. P. (2018). Application of storm water management model to an urban catchment. In Hydrologic Modeling (pp. 175-184). Springer.  
  21. Willard, L., Wynn-Thompson, T., Krometis, L., Neher, T., & Badgley, B. (2017). Does it pay to be mature? Evaluation of bioretention cell performance seven years postconstruction. Journal of Environmental Engineering, 143(9), 04017041.  
  22. Yang, B., Zhang, T., Li, J., Feng, P., & Miao, Y. (2023). Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China. Journal of environmental management, 334, 117442.  
  23. Yang, Y., & Chui, T. F. M. (2018). Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. Journal of environmental management, 206, 1090-1103.  
  24. Yin, D., Evans, B., Wang, Q., Chen, Z., Jia, H., Chen, A. S., & Fu, G. (2020). Integrated 1D and 2D model for better assessing runoff quantity control of low impact development facilities on community scale. Science of the Total Environment, 720, 137630.  
  25. Zhu, Z., Chen, Z., Chen, X., & Yu, G. (2019). An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. Journal of environmental management, 231, 504-514.  
  26. Zhuang, Q., Li, M., & Lu, Z. (2023). Assessing runoff control of low impact development in Hong Kong's dense community with reliable SWMM setup and calibration. Journal of environmental management, 345, 118599.