برآورد درصد پوشش گیاهی ذرت با استفاده از الگوریتم‏های پردازش تصویر

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

10.22059/jwim.2023.364331.1098

چکیده

پیشرفت علم و استفاده از فناوری‏های سنجش از دور، امکان پایش سلامت،‌ بررسی وضعیت گیاه، تعیین سطح و نوع کشت، محاسبه سرعت رشد و شاخص‏های گیاهی و سایر اطلاعات ارزشمند از مزرعه و باغ را  برای کشاورز فراهم آورده است. درصد پوشش گیاهی یکی از پارامترهای مهم در مدل‏های گیاهی برای تخمین عملکرد گیاه و وضعیت رشد آن محسوب می‏شود. روش‏های تعیین درصد پوشش گیاهی براساس داده‏های مشاهداتی زمینی، گران و زمان‏بر هستند. استفاده از پهپاد برای تصویربرداری هوایی و به‌کارگیری روش‏های مبتنی بر پردازش تصویر، می‏تواند پارامترهای موردنظر را در کل سطح مزرعه و با سرعت و دقت بالا به‌دست آورد. در این پژوهش برای تعیین درصد پوشش گیاهی ذرت، تعداد 441 تصویر هوایی در ارتفاع 30 متری از سطح زمین با استفاده از پهپاد شرکت DJI، مدل Mavic 2 pro در یکی از مزارع ذرت شهرستان الوند در استان قزوین، برداشت شد. از دو روش جداسازی و طبقه‏بندی به‌طور جدا برای تعیین مقدار درصد پوشش گیاهی استفاده شد. آزمون تفکیک‏پذیری و ضریب همبستگی بین داده‏های محاسباتی، تعیین و موردبررسی قرار گرفت. نتایج نشان داد اگرچه دقت هر دو روش بالا بود، اما به‌طور میانگین روش جداسازی مقدار درصد پوشش گیاهی را 10 درصد کم‌تر از الگوریتم طبقه‏بندی به‌دست آورد. هم‌چنین ضریب همبستگی بالای 97 درصد بین داده‏ها نشان داد دقت روش‏های بر مبنای پردازش تصویر مانند جداسازی پایین‏تر از روش‏های طبقه‏بندی است اما در صورت عدم دسترسی به نرم‏افزارهای موردنیاز که امکان تجزیه و تحلیل بر مبنای روش‏های هوش مصنوعی را دارند، می‏توان به‌راحتی با اجرای کد‏های برنامه‏نویسی مبتنی بر روش‏های جداسازی در زبان‏های سطح بالا و متن باز از جمله زبان پایتون به نتیجه مطلوبی رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating maize canopy cover percent by means of image processing algorithms

نویسنده [English]

  • Masoud Soltani
Department of Water Sciences and Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

The progress of science and using remote sensing technologies could help farmers to finds valuable information from field such as crop health, determining of the area and type of cultivation, calculating crop growth rate and various indices. Canopy cover percent is one of the vital parameters for modeling and prediction of yield production. Field observation methods of estimating CCP are expensive and time consuming. Using drones for arial imaging at field scale and image processing algorism to estimate CCP are fast and accurate. At this study, 441 arial photos was taken at height of 30 m above ground surface via DJI drone (Mavic 2 pro) for estimating maize CCP. The field was located at Alvand city-Qazvin province. Two different methods of segmentation and classification were used for assessing CCP. Region of interest separability test and linear regression between calculated data were used for result evaluation. Results showed that, although the accuracy of both methods was high, on average the segmentation methods obtained CCP 10 percent lower that classification algorism. Also, the high R-square coefficient of 97% between the data showed that the accuracy of methods based on image processing, such as segmentation, is lower than classification methods, but in case of lack of access to the required software, that are based on artificial intelligence methods, it is easy to achieve a favorable result by implementing programming codes based on segmentation methods in high-level and open-source languages, including Python.

کلیدواژه‌ها [English]

  • Classification
  • Excess Green index
  • Mahalanobis Distance
  • Thresholding
  1. Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4613-4618. https://doi.org/10.1073/pnas.1716999115
  2. Kisalaei, A., Golmohammadzadeh, F., Rasouli Sharabiani, V., & Golmohammadi, A. (2014). Applicaton Of Image Processing In Precision Agriculture. 3rd National Conference On Organic and Conventional Agriculture. (In Persian).
  3. Noda, K., Ezaki, N., Takizawa, H., Mizuno, S., & Yamamoto, S. (2006). Detection of plant saplessness with image processing. International Joint Conference SICE-ICASE. p. 4856-4860.
  4. Poonguzhali, R., & Vijayabhanu, A. (2019). Crop condition assessment using machine learning. International Journal of Recent Technology and Engineering, 7(6), 897-900.
  5. Saxena, L., & Armstrong, L. (2014). A Survey of Image Processing Techniques for Agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, 401-413. https://doi.org/10.5120/20052-1983
  6. An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought stress using deep convolutional neural network. Symmetry, 11(2), 1-14. https://doi.org/10.3390/sym11020256
  7. Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Machine Vision and Applications, 26(4), 495-506. https://doi.org/10.1007/s00138-015-0670-5
  8. Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
  9. Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151-155. https://doi.org/10.1007/s12892-011-0029-z
  10. Haddadi, S. R., Soltani, M., & Hashemi, M. (2022). Comparing the Accuracy of different image processing methods to ‎Estimate Sugar Beet Canopy Cover by Digital Camera Images. Water and Irrigation Management, 12(2), 295-308. https://doi.org/10.22059/jwim.2022.336225.954. (In Persian).
  11. Kazmi, W., Garcia-Ruiz, F. J., Nielsen, J., Rasmussen, J., & Jørgen Andersen, H. (2015). Detecting creeping thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture, 112, 10-19. https://doi.org/10.1016/j.compag.2015.01.008
  12. Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
  13. Thailambal, G., & Yogeshwari, M. (2020). Automatic segmentation of plant leaf disease using improved fast Fuzzy C-Means clustering and adaptive Otsu thresholding. European Journal of Molecular and Clinical Medicine, 7(3), 5447–5462. https://ejmcm.com/article_5513.html
  14. Chen, Y., & Gong, P. (2013). Clustering based on eigenspace transformation-CBEST for efficient classification. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 64-80.
  15. Bruzzone, L., & Demir, B. (2014). A review of modern approaches to classification of remote sensing data. Pages 127-143. Land Use and Land Cover Mapping in Europe, Springer.
  16. Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78-87.
  17. Pal, M., & Mather, P. (2006). Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27, 2895-2916.
  18. Sankarasrinivasan, S., Balasubramanian, E., Karthik, K., Chandrasekar, U., & Gupta, R. (2015).
    Health monitoringof civil structures with integrated UAV and image processing system. Procedia Computer Science, 54, 508-515.