روش‌های برآورد مقادیر برداشت و تخلیه منابع آب زیرزمینی (بخش اول: روش‌های مبتنی بر تجربیات بین‌المللی)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت آب، دانشگاه تربیت مدرس، تهران، ایران.

10.22059/jwim.2023.355854.1057

چکیده

رشد جمعیت، توسعه اقتصادی و تغییرات رژیم غذایی جوامع، منجر به افزایش تقاضای آب و غذا شده است. ازاین‌رو، بررسی نحوه مدیریت منابع آب زیرزمینی با شرایط به‌وجودآمده و محتمل در آینده، لازم به توجه است. روش­های برآورد تخلیه منابع آب زیرزمینی عبارتند از روش­های مبتنی بر حجم (براساس داده­های تراز هیدرولیکی، براساس سنجش از دور با GRACE و براساس مدل­های جهانی)، روش­های مبتنی بر بیلان آب (براساس مدل­های هیدرولوژیکی جهانی و براساس روش­های سنجش از دور و مدل‌ها) و برآورد­های غیرمستقیم زمین­سنجی یا ژئودزیکی. روش‌های مختلف برآورد تخلیه منابع آب زیرزمینی دارای مزایا و معایبی هستند. روش­های مبتنی بر داده­های تراز هیدرولیکی تا حدودی قدیمی هستند و در صورت وجود خطاهای انسانی احتمالی در سیستم اندازه­گیری، عدم­قطعیت این روش­ها افزایش می­یابد. از سوی دیگر، روش‌های غیرمستقیم و استفاده از مدل­های جهانی، تکامل یافته‌اند که پیشرفت‌ها و دقت قابل‌توجهی را به همراه دارند. با این‌حال، کاربری این روش­ها وابسته به وجود داده‌های زمینی است. در واقع با توسعه امکانات آماربرداری و افزایش دقت در شبیه‌سازی و برداشت داده‌ها، امکان تغییر روش به روش‌های دقیق‌تر وجود دارد اما بدون داشتن داده‌های دقیق، کاربرد این رویکردها توصیه نمی‌شود. از طرفی این بررسی نشان می­دهد که هم برآورد نرخ­های تخلیه فعلی و هم در دسترس‌بودن منابع آب زیرزمینی تجدیدناپذیر در آینده بسیار نامطمئن هستند. برای کاهش عدم‌قطعیت در آینده نزدیک، باید داده­ها و چالش­های پژوهشی قابل‌توجهی برطرف شوند تا بتوان برنامه پایداری منابع آب زیرزمینی در کشور را در راستای بهبود برنامه­های پایداری منابع آب زیرزمینی و با توجه به اقتصاد این منابع تدوین نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Groundwater Resources Withdrawal and Depletion Estimation Methods (Part 1: Methods Based on International Experiences)

نویسندگان [English]

  • Elmira Valipour
  • Mohammad Mahdi Rasouli
  • Hamed Ketabchi
Departement of Water Engineering and Management, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Food and water demand have increased as a result of population growth, economic development, and dietary changes. As a result, it is imperative to consider how to manage groundwater resources under existing and possible future conditions. Methods to assess groundwater depletion and withdrawal include volume-based methods (based on hydraulic head data, remote sensing with Gravity Recovery and Climate Experiment (GRACE) and (global) groundwater models), water balance methods (based on global hydrological models and remote sensing of fluxes beside the models) and indirect geodetic or geodetic estimates. Different methods of assessing groundwater depletion and withdrawal have advantages and disadvantages. The methods based on hydraulic head data are somewhat old and if there are possible human errors in the measurement system, the uncertainty of these methods increases. On the other hand, indirect methods and the use of global models have evolved, which bring significant improvements and accuracy. However, the use of these methods depends on the existence of observational data. In fact, with the development of data collection facilities and increasing accuracy in simulation and data collection, it is possible to change the method to more accurate methods, but without having partial data, the use of these approaches is not recommended. On the other hand, this study shows that both the estimation of current depletion rates and the future availability of non-renewable groundwater in the future is very uncertain. To reduce the uncertainty in the near future, significant data and research challenges must be resolved so that the sustainability plan of groundwater resources in the country can be formulated in order to improve the sustainability program of groundwater resources considering the hydro-economics of these resources.

کلیدواژه‌ها [English]

  • Aquifer recharge
  • Hydro-economics of groundwater resources
  • Sustainable management of groundwater resources
  • Uncertainty
  1. Abou Zaki, N., Torabi Haghighi, A., M. Rossi, P., J. Tourian, M., & Kløve, B. (2019). Monitoring groundwater storage depletion using gravity recovery and climate experiment (GRACE) data in Bakhtegan Catchment, Iran. Water, 11(7), 1456.
  2. Ann Wheeler, S., & Garrick, D. E. (2020). A tale of two water markets in Australia: lessons for understanding participation in formal water markets. Oxford Review of Economic Policy, 36(1), 132-153.
  3. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
  4. Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific reports, 11(1), 9135.
  5. Bastiaanssen, W. G. M., Cheema, M. J. M., Immerzeel, W. W., Miltenburg, I. J., & Pelgrum, H. (2012). Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resources Research, 48(11).
  6. Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., & Novali, F. (2008). Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge. Water Resources Research, 44 (2).
  7. Berbel, J., Borrego-Marin, M. M., Exposito, A., Giannoccaro, G., Montilla-Lopez, N. M., & Roseta-Palma, C. (2019). Analysis of irrigation water tariffs and taxes in Europe. Water Policy, 21(4), 806-825.
  8. Blomquist, W. (1988). The Performance of Institutions for Groundwater Management: Orange County. Workshop in Political Theory & Policy Analysis, Indiana University.
  9. Boretti, A. (2020). Implications on food production of the changing water cycle in the Vietnamese Mekong Delta. Global Ecology and Conservation, 22, e00989.
  10. Brozović, N., Sunding, D. L., & Zilberman, D. (2010). On the spatial nature of the groundwater pumping externality. Resource and Energy Economics, 32(2), 154-164.
  11. Burt, O. R. (1966). Economic control of groundwater reserves. American Journal of Agricultural Economics, 48(3_Part_I), 632-647.
  12. Burt, O. R. (1967). Temporal allocation of groundwater. Water resources research, 3(1), 45-56.
  13. Cheema, M. J. M., Immerzeel, W. W., & Bastiaanssen, W. G. M. (2014). Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater, 52(1), 25-36.
  14. Chen, B., Gong, H., Chen, Y., Li, X., Zhou, C., Lei, K., ... & Zhao, X. (2020). Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Science of the Total Environment, 735, 139111.
  15. Chen, J., Knight, R., Zebker, H. A., & Schreüder, W. A. (2016). Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research, 52(5), 3623-3636.
  16. Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment, 253, 112161.
  17. Cui, T., Sreekanth, J., Pickett, T., Rassam, D., Gilfedder, M., & Barrett, D. (2021). Impact of model parameterization on predictive uncertainty of regional groundwater models in the context of environmental impact assessment. Environmental Impact Assessment Review, 90, 106620.
  18. Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food trade. Nature, 543(7647), 700-704.
  19. De Graaf, I. E. M., Van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2014). Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges. Advances in water resources, 64, 21-33.
  20. De Graaf, I. E., van Beek, R. L., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., & Bierkens, M. F. (2017). A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Advances in water Resources, 102, 53-67.
  21. De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Essink, G. H. O., ... & Kroon, T. (2014). An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98-108.
  22. Dinar, A., Pochat, V., & Albiac-Murillo, J. (Eds.). (2015). Water pricing experiences and innovations (Vol. 9). Switzerland: Springer International Publishing.
  23. Dumont, A. (2013, April). Groundwater is not a common-pool resource: ordering sustainability issues of groundwater use. In 3rd International IWA Conference on Water Economics, Statistics and Finance (pp. F-1).
  24. Edalat, A., Khodaparast, M., & Rajabi, A. M. (2020). Detecting land subsidence due to groundwater withdrawal in Aliabad Plain, Iran, using ESA sentinel-1 satellite data. Natural Resources Research, 29, 1935-1950.
  25. Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic value of climate change adaptation strategies for water management in Spain’s Jucar basin. Journal of Water Resources Planning and Management, 143(5), 04017005.
  26. Esteban, E., & Albiac, J. (2011). Groundwater and ecosystems damages: Questioning the Gisser–Sánchez effect. Ecological Economics, 70(11), 2062-2069.
  27. Fabiani, S., Vanino, S., Napoli, R., & Nino, P. (2020). Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environmental Science & Policy, 104, 1-12.
  28. Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945-948.
  29. Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., ... & Rodell, M. (2011). Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophysical Research Letters, 38(3).
  30. Foster, T., Brozović, N., & Butler, A. P. (2015). Analysis of the impacts of well yield and groundwater depth on irrigated agriculture. Journal of Hydrology, 523, 86-96.
  31. Gisser, M., & Sanchez, D. A. (1980). Competition versus optimal control in groundwater pumping. Water resources research, 16(4), 638-642.
  32. Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., & Cardoso, A. C. (2016). Assessing water ecosystem services for water resource management. Environmental Science & Policy, 61, 194-203.
  33. Guzy, A., & Malinowska, A. A. (2020). State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water, 12(7), 2051.
  34. Halvorsen, R., & Layton, D. F. (Eds.). (2015). Handbook on the economics of natural resources. Edward Elgar Publishing.
  35. Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., ... & Ye, S. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34-36.
  36. Hotelling, H. (1931). The economics of exhaustible resources. Journal of political Economy, 39(2), 137-175.
  37. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., ... & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of hydrometeorology, 8(1), 38-55.
  38. Jenkins, K., Dobson, B., Decker, C., & Hall, J. W. (2021). An Integrated Framework for Risk‐Based Analysis of Economic Impacts of Drought and Water Scarcity in England and Wales. Water Resources Research, 57(8), e2020WR027715.
  39. Keegan-Treloar, R., Werner, A. D., Irvine, D. J., & Banks, E. W. (2021). Application of Indicator Kriging to hydraulic head data to test alternative conceptual models for spring source aquifers. Journal of Hydrology, 601, 126808.
  40. Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea‐level rise. Geophysical Research Letters, 38(17).
  41. Konikow, L. F., & Leake, S. A. (2014). Depletion and capture: revisiting “the source of water derived from wells”. Groundwater, 52(S1), 100-111.
  42. Koundouri, P. (2000). Three approaches to measuring natural resource scarcity: theory and application to groundwater.
  43. Koundouri, P. (2004). Current issues in the economics of groundwater resource management. Journal of Economic Surveys, 18(5), 703-740.
  44. Kourakos, G., Dahlke, H. E., & Harter, T. (2019). Increasing groundwater availability and seasonal base flow through agricultural managed aquifer recharge in an irrigated basin. Water Resources Research, 55(9), 7464-7492.
  45. Kubiszewski, I., Costanza, R., Anderson, S., & Sutton, P. (2020). The future value of ecosystem services: Global scenarios and national implications. In Environmental Assessments (pp. 81-108). Edward Elgar Publishing.
  46. Lall, U., Josset, L., & Russo, T. (2020). A snapshot of the world's groundwater challenges. Annual Review of Environment and Resources, 45, 171-194.
  47. MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., ... & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762-766.
  48. MacEwan, D., Cayar, M., Taghavi, A., Mitchell, D., Hatchett, S., & Howitt, R. (2017). Hydroeconomic modeling of sustainable groundwater management. Water Resources Research, 53(3), 2384-2403.
  49. Mahmoodzadeh, D., & Karamouz, M. (2022). A Hydroeconomic Simulation-Optimization Framework to Assess the Cooperative Game Theory in Coastal Groundwater Management. Journal of Water Resources Planning and Management, 148(1), 04021092.
  50. Manning, D. T., Rad, M. R., Suter, J. F., Goemans, C., Xiang, Z., & Bailey, R. (2020). Non-market valuation in integrated assessment modeling: The benefits of water right retirement. Journal of Environmental Economics and Management, 103, 102341.
  51. Marques, T. V., Paschoal, J. A. R., Barone, R. S. C., Cyrino, J. E. P., & Rath, S. (2018). Depletion study and estimation of withdrawal periods for florfenicol and florfenicol amine in pacu (Piaractus mesopotamicus). Aquaculture Research, 49(1), 111-119.
  52. Massoud, E. C., Purdy, A. J., Miro, M. E., & Famiglietti, J. S. (2018). Projecting groundwater storage changes in California’s Central Valley. Scientific reports, 8(1), 12917.
  53. Masood, A., Aslam, M., Pham, Q. B., Khan, W., & Masood, S. (2021). Integrating water quality index, GIS and multivariate statistical techniques towards a better understanding of drinking water quality. Environmental Science and Pollution Research, 1-17.
  54. Merrill, N. H., & Guilfoos, T. (2018). Optimal groundwater extraction under uncertainty and a spatial stock externality. American journal of agricultural economics, 100(1), 220-238.
  55. Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., & Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental research letters, 12(6), 064006.
  56. Moore, W. S., & Joye, S. B. (2021). Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. Frontiers in Earth Science, 9, 600710.
  57. Negahdary, M. (2022). Shrinking aquifers and land subsidence in Iran. Science, 376(6599), 1279-1279.
  58. Negri, D. H. (1989). The common property aquifer as a differential game. Water Resources Research, 25(1), 9-15.
  59. Noon, A. M., Ahmed, H. G., & Sulaiman, S. O. (2021). Assessment of Water Demand in Al-Anbar Province-Iraq. Environment and Ecology Research, 9(2), 64-75.
  60. Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. Cambridge university press.
  61. Owen, D., Cantor, A., Nylen, N. G., Harter, T., & Kiparsky, M. (2019). California groundwater management, science-policy interfaces, and the legacies of artificial legal distinctions. Environmental Research Letters, 14(4), 045016.
  62. Perrone, D., & Jasechko, S. (2017). Dry groundwater wells in the western United States. Environmental Research Letters, 12(10), 104002.
  63. Pfeiffer, L., & Lin, C. Y. C. (2012). Groundwater pumping and spatial externalities in agriculture. Journal of Environmental Economics and Management, 64(1), 16-30.
  64. Poland, J. F. (1975). Land Subsidence, in the San Joaquin Valley, California, as of 1972: A History of Land Subsidence Caused by Water-level Decline in the San Joaquin Valley, from the 1920's to 1972 (Vol. 437). US Government Printing Office.
  65. Pouladi, P., Afshar, A., Molajou, A., & Afshar, M. H. (2020). Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 65(8), 1249-1261.
  66. Provencher, B., & Burt, O. (1993). The externalities associated with the common property exploitation of groundwater. Journal of Environmental Economics and Management, 24(2), 139-158.
  67. Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-Economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological economics, 66(1), 51-65.
  68. Pulido-Velazquez, M., Marques, G. F., Harou, J. J., & Lund, J. R. (2016). Hydroeconomic models as decision support tools for conjunctive management of surface and groundwater. Integrated groundwater management, 693-710.
  69. Richey, A. S., Thomas, B. F., Lo, M. H., Famiglietti, J. S., Swenson, S., & Rodell, M. (2015). Uncertainty in global groundwater storage estimates in a T otal G roundwater S tress framework. Water resources research, 51(7), 5198-5216.
  70. Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M. H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651-659.
  71. Rougé, C., Harou, J. J., Pulido-Velazquez, M., Matrosov, E. S., Garrone, P., Marzano, R., ... & Rizzoli, A. E. (2018). Assessment of smart-meter-enabled dynamic pricing at utility and river basin scale. Journal of Water Resources Planning and Management, 144(5), 04018019.
  72. Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the national academy of sciences, 109(24), 9320-9325.
  73. Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4).
  74. Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., ... & Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52(12), 9412-9429.
  75. Scheierling, S. M., Young, R. A., & Cardon, G. E. (2006). Public subsidies for water‐conserving irrigation investments: Hydrologic, agronomic, and economic assessment. Water Resources Research, 42(3).
  76. Smith, R. G., Knight, R., Chen, J., Reeves, J. A., Zebker, H. A., Farr, T., & Liu, Z. (2017). Estimating the permanent loss of groundwater storage in the southern S an J oaquin V alley, C alifornia. Water Resources Research, 53(3), 2133-2148.
  77. Sutanudjaja, E. H., Van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H., Drost, N., ... & Bierkens, M. F. (2018). PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 11(6), 2429-2453.
  78. Tao, S., Zhang, Y., Yuan, M., Zhang, R., Xu, Z., & Sun, Y. (2021). Behavioral economics optimized renewable power grid: a case study of household energy storage. Energies, 14(14), 4154.
  79. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., ... & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329.
  80. Theesfeld, I. (2010). Institutional challenges for national groundwater governance: Policies and issues. Groundwater, 48(1), 131-142.
  81. Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36(18).
  82. To, P. X., Dressler, W. H., Mahanty, S., Pham, T. T., & Zingerli, C. (2012). The prospects for payment for ecosystem services (PES) in Vietnam: a look at three payment schemes. Human ecology, 40, 237-249.
  83. Tortajada, C., & González-Gómez, F. (2022). Agricultural trade: Impacts on food security, groundwater and energy use. Current Opinion in Environmental Science and Health, 27.
  84. Van Beek, L. P. H., Wada, Y., & Bierkens, M. F. (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47(7).
  85. Vasco, D. W., Harness, P., Pride, S., & Hoversten, M. (2017). Estimating fluid-induced stress change from observed deformation. Geophysical Journal International, 208(3), 1623-1642.
  86. Vieira, J., Cabral, M., Almeida, N., Silva, J. G., & Covas, D. (2020). Novel methodology for efficiency-based long-term investment planning in water infrastructures. Structure and Infrastructure Engineering, 16(12), 1654-1668.
  87. Wada, Y., Van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., & Bierkens, M. F. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47(7).
  88. Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20).
  89. Worthington, V. E., Burt, O. R., & Brustkern, R. L. (1985). Optimal management of a confined groundwater system. Journal of Environmental Economics and Management, 12(3), 229-245.
  90. Xu, T., Zheng, H., Zhao, J., Liu, Y., Tang, P., Yang, Y. E., & Wang, Z. (2018). A two‐phase model for trade matching and price setting in double auction water markets. Water Resources Research, 54(4), 2999-3017.
  91. Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005). WEAP21-A demand-, priority, and preference-driven water planning model: part 1: model characteristics. Water international, 30(4), 487-500.
  92. Zamanialaei, M., McCarty, J. L., Fain, J. J., & Hughes, M. R. (2022). Understanding the perceived indicators of food sovereignty and food security for rice growers and rural organizations in Mazandaran Province, Iran. Agriculture & Food Security, 11(1), 1-15.
  93. Zhang, M., & Burbey, T. J. (2016). Inverse modelling using PS‐InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada. Hydrological Processes, 30(24), 4494-4516.
  94. Zhao, Q., Zhang, B., Yao, Y., Wu, W., Meng, G., & Chen, Q. (2019). Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain. Journal of Hydrology, 575, 1065-1072.
  95. Zisopoulou, K., Zisopoulos, D., & Panagoulia, D. (2022). Water economics: An In-depth analysis of the connection of blue Water with some primary level aspects of economic theory I. Water, 14(1), 103.