شناسایی مکان و دبی پمپاژ چاه‌های ناشناخته با استفاده از الگوریتم اتوماتای یادگیر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران.

10.22059/jwim.2023.352151.1035

چکیده

در مقاله حاضر، یک مدل مبتنی بر روش مسئله معکوس، برای پیدا کردن مکان و دبی پمپاژ چاه‌های ناشناخته، پیشنهاد شده است. شبیه‌سازی توسط معادله دو بعدی جریان آب زیرزمینی صورت گرفته است که با استفاده از تکنیک عددی تفاضل‌های محدود حل می‌گردد. برای بهینه‌سازی، از یک مدل مبتنی بر الگوریتم اتوماتای یادگیر استفاده شده است. دو مدل شبیه‌سازی و بهینه‌سازی در مدل پیشنهادی ادغام شده‌اند. مدل پیشنهادی، به منظور رسیدن به شرایط بهینه، دبی چاه‌ها را تغییر می‌دهد و پس از بررسی هر کدام از چاهها، در صورتیکه قابل حذف باشد، آنرا از مدل حذف و در غیر این صورت، تا انتهای محاسبات، در دوره زمانی فعلی، حفظ می-کند. پس از اینکه تعداد چاه‌های غیر قابل حذف مشخص گردید، هر کدام از آنها را در نقاط مختلف همسایگی خود بررسی کرده و در نهایت به مکانی که خطای کمتری ایجاد نماید منتقل می‌کند. روش پیشنهادی حاضر می‌تواند در حل مسائل مختلف، در شرایط ماندگار و غیر ماندگار مورد استفاده قرار گیرد. برای بررسی کارایی این مدل، از دو آبخوان فرضی در حالت جریان ماندگار و غیر ماندگار که در آنها تعدادی چاه ناشناخته وجود دارد، استفاده گردید. مدل تهیه شده توانایی تعیین تعداد، موقعیت و دبی این چاه‌ها با دقت خطای جذر میانگین مربعات تفاضل 0/061 متر در مثال عددی اول و 0/010 در مثال عددی دوم را نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification the Location and Pumping Discharge of Unknown Wells Using the Learning Automata Algorithm

نویسندگان [English]

  • Ravak Pourjafar Chafjiri
  • Hossein Mohammad Vali Samani
  • Habib Mousavi Jahromi
Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The present article proposes a model using the inverse problem to find locations and pumping discharges of ‎‎unknown wells. The simulation is performed by using the two-dimensional groundwater flow equation, which is solved by ‎the finite difference numerical technique. The learning automata algorithm has been used as a tool for ‎optimization. ‎The simulation and the optimization models are linked to obtaining the final model. To identify the ‎location and discharge of the unknown wells, the proposed model changes the discharges of the wells and studies ‎the influence on the objective function which is the root mean square error of the calculated and observed ‎‎piezometric head. The wells which increase the objective function are deleted. After the completion of this ‎stage, the locations of the wells are moved to the vicinity in all directions and the locations which yield fewer ‎errors in terms of the objective function will result in the final locations. To check the efficiency of this ‎model, two hypothetical aquifers were used in ‎a steady and unsteady flow state, in which there are some ‎unknown wells. The prepared model showed the ‎ability to determine these wells' number, location, and flow rate ‎with the accuracy of the root mean square error of 0.061 meters in the first numerical example and 0.010 in the second numerical example.

کلیدواژه‌ها [English]

  • Inverse Problem
  • Learning Automata
  • Optimization
  • Unknown Wells
  1. Alcolea, A., Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678-1689.
  2. Ayvaz, M. T., & Karahan, H. (2008). A simulation/optimization model for the identification of unknown groundwater well locations and pumping rates. Journal of Hydrology, 357(1-2), 76-92.
  3. Babbar-Sebens, M., & Mukhopadhyay, S. (2009). Reinforcement learning for human-machine collaborative optimization: Application in ground water monitoring. 2009 IEEE international conference on systems, man and cybernetics,
  4. Bai, Y., Chen, W., Chen, J., & Guo, W. (2020). Deep learning methods for solving linear inverse problems: Research directions and paradigms. Signal Processing, 177, 107729.
  5. Bashi-Azghadi, S. N., & Kerachian, R. (2010). Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Science of the Total Environment, 408(10), 2189-2198.
  6. Bear, J. (2012). Hydraulics of groundwater. Courier Corporation.
  7. Boyce, S. E., & Yeh, W. W.-G. (2014). Parameter-independent model reduction of transient groundwater flow models: Application to inverse problems. Advances in Water Resources, 69, 168-180.
  8. Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206-222.
  9. Castellazzi, P., Garfias, J., & Martel, R. (2021). Assessing the efficiency of mitigation measures to reduce groundwater depletion and related land subsidence in Querétaro (Central Mexico) from decadal InSAR observations. International Journal of Applied Earth Observation and Geoinformation, 105, 102632.
  10. Dangar, S., Asoka, A., & Mishra, V. (2021). Causes and implications of groundwater depletion in India: A review. Journal of Hydrology, 596, 126103.
  11. Ejaz, F., Wöhling, T., Höge, M., & Nowak, W. (2022). Lumped geohydrological modelling for long-term predictions of groundwater storage and depletion. Journal of Hydrology, 606, 127347.
  12. Elçi, A., & Ayvaz, M. T. (2014). Differential-evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. Journal of Hydrology, 511, 736-749.
  13. Ferraresi, M., Todini, E., & Vignoli, R. (1996). A solution to the inverse problem in groundwater hydrology based on Kalman filtering. Journal of Hydrology, 175(1-4), 567-581.
  14. Giacobbo, F., Marseguerra, M., & Zio, E. (2002). Solving the inverse problem of parameter estimation by genetic algorithms: the case of a groundwater contaminant transport model. Annals of nuclear energy, 29(8), 967-981.
  15. Halloran, L. J., Brunner, P., & Hunkeler, D. (2019). COMPEST, a PEST-COMSOL interface for inverse multiphysics modelling: Development and application to isotopic fractionation of groundwater contaminants. Computers & Geosciences, 126, 107-119.
  16. Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. In: US Department of the Interior, US Geological Survey Reston, VA, USA.
  17. Hokr, M., & Balvín, A. (2021). Inverse hydraulic and transport model of groundwater recovery experiment using mixed-dimensional concept. International Journal of Rock Mechanics and Mining Sciences, 144, 104734.
  18. Hörning, S., Sreekanth, J., & Bárdossy, A. (2019). Computational efficient inverse groundwater modeling using Random Mixing and Whittaker–Shannon interpolation. Advances in Water Resources, 123, 109-119.
  19. Huang, C.-H., Li, J.-X., & Kim, S. (2008). An inverse problem in estimating the strength of contaminant source for groundwater systems. Applied mathematical modelling, 32(4), 417-431.
  20. Janža, M. (2022). Optimization of well field management to mitigate groundwater contamination using a simulation model and evolutionary algorithm. Science of the Total Environment, 807, 150811.
  21. Jia, X., Hou, D., Wang, L., O'Connor, D., & Luo, J. (2020). The development of groundwater research in the past 40 years: A burgeoning trend in groundwater depletion and sustainable management. Journal of Hydrology, 587, 125006.
  22. Mars, P., Chen, J., & Nambiar, R. (2018). Learning algorithms: theory and applications in signal processing, control and communications. CRC press.
  23. Mazzoni, A., Heggy, E., & Scabbia, G. (2018). Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Global Environmental Change, 53, 157-173.
  24. Mehmood, Q., Mahmood, W., Awais, M., Rashid, H., Rizwan, M., Anjum, L., Muneer, M. A., Niaz, Y., & Hamid, S. (2020). Optimizing groundwater quality exploration for irrigation water wells using geophysical technique in semi-arid irrigated area of Pakistan. Groundwater for Sustainable Development, 11, 100397.
  25. Moghaddam, M. B., Mazaheri, M., & Samani, J. M. V. (2021). Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review. Groundwater for Sustainable Development, 15, 100651.
  26. Motevalli, A., Naghibi, S. A., Hashemi, H., Berndtsson, R., Pradhan, B., & Gholami, V. (2019). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of cleaner production, 228, 1248-1263.
  27. Narendra, K. S., & Thathachar, M. A. (2012). Learning automata: an introduction. Courier corporation.
  28. Nguyen, M., Lin, Y. N., Tran, Q. C., Ni, C.-F., Chan, Y.-C., Tseng, K.-H., & Chang, C.-P. (2022). Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Engineering Geology, 299, 106555.
  29. Park, D., Lee, E., Kaown, D., Lee, S.-S., & Lee, K.-K. (2021). Determination of optimal well locations and pumping/injection rates for groundwater heat pump system. Geothermics, 92, 102050.
  30. Park, E., Kim, K.-Y., Suk, H., Choung, S., & Han, W. S. (2021). A basin-scale aquifer characterization using an inverse analysis based on groundwater level fluctuation in response to precipitation: Practical application to a watershed in Jeju Island, South Korea. AGU Fall Meeting Abstracts,
  31. Peters, C. N., Kimsal, C., Frederiks, R. S., Paldor, A., McQuiggan, R., & Michael, H. A. (2022). Groundwater pumping causes salinization of coastal streams due to baseflow depletion: Analytical framework and application to Savannah River, GA. Journal of Hydrology, 604, 127238.
  32. Redoloza, F., & Li, L. (2019). A novel method for well placement design in groundwater management: Extremal optimization. Advances in Water Resources, 132, 103405.
  33. Rezvanian, A., Moradabadi, B., Ghavipour, M., Daliri Khomami, M. M., & Meybodi, M. R. (2019). Introduction to learning automata models. In Learning Automata Approach for Social Networks (pp. 1-49). Springer.
  34. Saffi, M., & Cheddadi, A. (2007). Explicit algebraic influence coefficients: a one-dimensional transient aquifer model. Hydrological sciences journal, 52(4), 763-776.
  35. Saffi, M., & Cheddadi, A. (2010). Identification of illegal groundwater pumping in semi-confined aquifers. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(8), 1348-1356.
  36. Samani, S. (2021). Analyzing the groundwater resources sustainability management plan in Iran through comparative studies. Groundwater for Sustainable Development, 12, 100521.
  37. Sit, M., Langel, R. J., Thompson, D., Cwiertny, D. M., & Demir, I. (2021). Web-based data analytics framework for well forecasting and groundwater quality. Science of the Total Environment, 761, 144121.
  38. Su, G., Wu, Y., Zhan, W., Zheng, Z., Chang, L., & Wang, J. (2021). Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades. Journal of Hydrology, 600, 126678.
  39. Tameh, M. A. H., Zadeh, H. M., & Arasteh, P. D. (2016). A novel solution to define the optimum number and location of new wells to improve groundwater level map. Procedia Engineering, 154, 252-259.
  40. Tilak, O., Babbar-Sebens, M., & Mukhopadhyay, S. (2011). Decentralized and partially decentralized reinforcement learning for designing a distributed wetland system in watersheds. 2011 IEEE International Conference on Systems, Man, and Cybernetics,
  41. Tsai, F. T.-C., Sun, N.-Z., & Yeh, W. W.-G. (2005). Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. Journal of Hydrology, 308(1-4), 269-283.
  42. Tung, C.-P., & Chou, C.-A. (2004). Pattern classification using tabu search to identify the spatial distribution of groundwater pumping. Hydrogeology Journal, 12(5), 488-496.
  43. Van Camp, M., Radfar, M., & Walraevens, K. (2010). Assessment of groundwater storage depletion by overexploitation using simple indicators in an irrigated closed aquifer basin in Iran. Agricultural Water Management, 97(11), 1876-1886.
  44. Winton, C., Pettway, J., Kelley, C., Howington, S., & Eslinger, O. J. (2011). Application of proper orthogonal decomposition (POD) to inverse problems in saturated groundwater flow. Advances in Water Resources, 34(12), 1519-1526.
  45. Yar, P. (2020). Urban development and its impact on the depletion of groundwater aquifers in Mardan City, Pakistan. Groundwater for Sustainable Development, 11, 100426.
  46. Zio, E. (1997). Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks. Progress in Nuclear Energy, 31(3), 303-315.