ارزیابی آنتروپی تئوری مبتنی بر جنگل تصادفی در پایش کیفی شبکه آب زیرزمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، دانشکده مهندسی، موسسه آموزش عالی صبا، ارومیه، ایران.

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

10.22059/jwim.2022.347038.1010

چکیده

پایش کیفی شبکه‌های آب زیرزمینی به دلیل اهمیت آن در بخش‌های مختلف از اهمیت بالایی برخوردار است. در این مطالعه جهت پایش کیفی مقادیر هدایت الکتریکی (EC) و کل مواد جامد محلول (TDS) در آب زیرزمینی 12 حلقه چاه در محدوده دشت تسوج واقع در شمال دریاچه ارومیه از تئوری آنتروپی مبتنی بر جنگل تصادفی در دوره آماری 98-1382 استفاده شد. جهت بررسی اثر متقابل چاه‌ها در محدوده آبخوان از روش مرسوم (رگرسیون چند متغیره) و الگوریتم جنگل تصادفی استفاده شد. با مقایسه عملکرد دو مدل یاد شده در شبیه‌سازی مقادیر EC و TDS در حالت 12 متغیره، نتایج نشان داد که مدل جنگل تصادفی از عملکرد بهتر و میزان خطای کمتری نسبت به مدل رگرسیون چند متغیره برخوردار است. به طور متوسط الگوریتم جنگل تصادفی موفق به کاهش 40 درصدی در شبیه‌سازی مقادیر EC و کاهش 56 درصدی در شبیه‌سازی مقادیر TDS در آبخوان مورد مطالعه شد. نتایج رتبه‌بندی چاه‌های مورد بررسی نشان داد که چاه قره تپه برترین رتبه و چاه امستجان کم اهمیت‌ترین رتبه را در بین چاه‌های مورد مطالعه کسب کرده‌اند که بیانگر اهمیت اطلاعات استخراج شده از چاه قره تپه می‌باشد. با توجه به پهنه‌بندی شاخص انتقال اطلاعات در محدوده آبخوان نتایج نشان داد که در مورد پایش مقادیر EC محدودیتی در آبخوان وجود ندارد و پراکندگی چاه‌ها به بهترین حالت می‌باشد. هیچ گونه کمبود چاه نیز از نظر تبادل اطلاعات شوری در منطقه مورد مطالعه احساس نمی‌شود. در خصوص مقادیر TDS کمبود چاه در نواحی مرکزی و نوار مرزی شرقی و غربی مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network

نویسندگان [English]

  • Fatemeh Bageri 1
  • Keivan Khalili 2
  • Mohammad Nazeri Tahrudi 3
1 Department of Civil Engineering, Saba Institute of Higher Education, Urmia, Iran.
2 Department of Water Engineering, Urmia University, Urmia, Iran.
3 Department of Water Engineering, Shahrekord University, Shahrekord, Iran.
چکیده [English]

The quality monitoring of groundwater networks is of great importance due to its importance in different sectors of agriculture, drinking, industry, etc., and the necessity of its periodic use leads to the recognition of quality changes of water resources in different periods. In this study, the entropy theory based on random forest was used to quality monitoring of electrical conductivity (EC) and total dissolved solids (TDS) in the groundwater of 12 wells in the Tasouj plain located in south of Lake Urmia from 2002 through 2019. In order to investigate the interaction of wells in the aquifer area, the conventional method (multivariate regression) and the random forest algorithm were used. By comparing the performance of the two mentioned models in simulating EC and TDS values in a 12-variable mode, the results showed that the random forest model has a better performance and a lower error rate than the multi-variable regression model. On average, the random forest algorithm reduced the error rate by 40% and 56% in simulation EC and TDS values, respectively, in the studied aquifer. The ranking results of the studied wells showed that the Qara Tape well has the highest rank and the Amestjan well has the least important rank among the studied wells, which indicates the importance of the information extracted from the Qara Tape well. According to the zoning of the information transformation index in the aquifer area, the results showed that there is no limitation in monitoring of EC values in the aquifer, and the scattering of the wells is the best. There is no shortage of wells in terms of exchange of salinity information in the study area. Regarding the TDS values, a lack of wells was observed in the central areas and the eastern and western border areas.

کلیدواژه‌ها [English]

  • Entropy Theory
  • Information Transformation
  • Quality Monitoring
  • Random Forest
  1. Breiman, L. (2001). Random forests. Machine learning45(1), 5-32.
  2. Chapman, T. G. (1986). Entropy as a measure of hydrologic data uncertainty and model performance. Journal of Hydrology, 85(1-2), 111-126.
  3. Chen, Y. C., Wei, C., & Yeh, H. C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes: An International Journal, 22(3), 340-346.
  4. Hastie, T., Friedman, J., Tibshirani, R., Hastie, T., Friedman, J., & Tibshirani, R. (2001). Unsupervised learning. The elements of statistical learning: Data mining, inference, and prediction, 437-508.
  5. Harmancioglu, N. B., & Alpaslan, N. (1992). Water quality monitoring network design: a problem of multi‐objective decision making 1. JAWRA Journal of the American Water Resources Association, 28(1), 179-192.
  6. Harmancioglu, NB., Fistikoglu, O., Ozkul, S D., Singh, VP., & Alpaslan N. (1999). Water quality Monitoring Network Desighn. Kluwer, Boston, USA, 1999; 299pp.
  7. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.
  8. Khashei-Siuki, A., Shahidi, A., Ramezani, Y., & Nazeri Tahroudi, M. (2020). Forecasting the groundwater monitoring network using hybrid time series models(Case study: Nazlochai). Water and Soil Conversation, 27(3), 85-103 (in Persian).
  9. Krstanovic, P. F. (1988). Application of entropy theory to multivariate hydrologic analysis. (Volumes I and II)(Doctoral dissertation, Louisiana State University and Agricultural & Mechanical College).
  10. Lee, J. H. (2013). Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy, 15(9), 3419-3434.
  11. Leite, G. D. N. P., da Cunha, G. T. M., dos Santos Junior, J. G., Araújo, A. M., Rosas, P. A. C., Stosic, T., ... & Rosso, O. A. (2021). Alternative fault detection and diagnostic using information theory quantifiers based on vibration time-waveforms from condition monitoring systems: Application to operational wind turbines. Renewable Energy, 164, 1183-1194.
  12. Markus, M., Knapp, H. V., & Tasker, G. D. (2003). Entropy and generalized least square methods in assessment of the regional value of streamgages. Journal of hydrology, 283(1-4), 107-121.
  13. Mishra, A. K., & Coulibaly, P. (2010). Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380(3-4), 420-437.
  14. Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management, 16(1), 37-49.
  15. Mogheir, Y., Singh, V. P., & De Lima, J. L. M. P. (2006). Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeology Journal, 14(5), 700-712.
  16. Nazeri Tahroudi, M., Khashei Siuki, A., & Ramezani, Y. (2019). Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory. Environmental monitoring and assessment, 191(4), 1-17.
  17. Ozkul, S., Harmancioglu, N. B., & Singh, V. P. (2000). Entropy-based assessment of water quality monitoring networks. Journal of hydrologic engineering, 5(1), 90-100.
  18. Ramezani, Y., Pourreza-Bilondi, M., Yaghoobzadeh, M., & Nazeri Tahroudi, M. (2018). Qualitative Monitoring of Drinking Water Using Entropy Indices (Case Study: Central Aquifer of Birjand Plain). Iranian journal of irrigation and drainage, 12(3), 556-568. (in Persian).
  19. Shahidi, A., Khashei-Siuki, A., & Nazeri Tahroudi, M. (2019). Designing Monitoring Network for Rain Gauge Stations Using Irregularity Theory (Case Study: Urmia Lake Basin). Iranian journal of irrigation and drainage, 13(2), 296-308. (in Persian).
  20. Shannon, CE. (1948). A mathematical theory of communication, bell System technical Journal, 27, 379-423 and 623-656. Mathematical Reviews (MathSciNet), MR10, 133e.
  21. Shannon, C. E., & Weiner, W. (1948). A mathematical theory of communication. Publ. Urbana, IL: University of Illinois Press.
  22. Shi, B., Jiang, J., Sivakumar, B., Zheng, Y., & Wang, P. (2018). Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory. Water research, 134, 140-152.
  23. Singh, V. P. (1997). The use of entropy in hydrology and water resources. Hydrological processes, 11(6), 587-626.