مقایسه صحت روش‌های مختلف پردازش تصویر در برآورد پوشش سایه‌انداز گیاه چغندرقند با استفاده از تصاویر دوربین دیجیتال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

2 استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

3 محقق مرکز تحقیقات سنجش از راه دور دانشکده عمران، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

در پژوهش حاضر، از عکس‌برداری دیجیتال برای برآورد مقدار پوشش سایه‌انداز چغندرقند استفاده شد. برای این منظور، مجموعه تصاویر مرئی گیاه چغندرقند، در طول دوره رشد، در سال 1396، تحت تیمارهای تنش خشکی و نیتروژن در گلخانه‌ای در پژوهشگاه علوم گیاهی ETH واقع در لیندائو اسچیکان، سوئیس، تهیه شد. تیمارهای این پژوهش شامل دو سطح تنش آبیاری (کم‌آبیاری و آبیاری کامل) و سه سطح تنش کود (20، 40 و 80 کیلوگرم بر هکتار نیتروژن) بود. جداسازی تصاویر، با استفاده از کتابخانه‌های پردازش تصویر در زبان برنامه‌نویسی پایتون و با بهره‌گیری از الگوریتم‌های تمایز و آستانه‌گذاری تصویرها انجام گرفت. به این منظور از روش‌های ترکیبی جداسازی با استفاده از شاخص‌های گیاهی تمایز (گیاه از خاک و پس‌زمینه) سبزینگی مازاد، تفاضل باند سبز مازاد با باند قرمز مازاد و بدون استفاده از شاخص تمایز و الگوریتم‌های آستانه‌گذاری انتخابی و آستانه‌گذاری خودکار Otsu و مثلثی استفاده شد. بنابراین، نُه روش ترکیبی متشکل از الگوریتم‌های تمایز و آستانه‌گذاری برای برآورد پوشش سایه‌انداز ایجاد شد که روش‌های ترکیبی شاخص گیاهی تفاضل سبزینگی مازاد با مقدار باند قرمز مازاد و آستانه‌گذاری انتخابی (ExGR & M_Threshold) و شاخص سبزینگی مازاد و آستانه‌گذاری Otsu (ExG & Ostu) به‌ترتیب، بیش‌ترین صحت، 69/94 درصد و 52/87 درصد را داشتند. روش بدون شاخص تمایز و آستانه‌گذاری مثلثی (No_Discrimination & Triangle) کم‌ترین صحت را با مقدار 18/53 درصد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing the accuracy of different image processing methods to estimate sugar beet canopy cover by digital camera images

نویسندگان [English]

  • Seyed Reza Haddadi 1
  • Masoud Soltani 2
  • MASOUMEH HASHEMI 3
1 M. Sc. Student, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
2 Assistant Professor, Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
3 Researcher, Faculty of Remote Sensing Institute of Civil Engineering, Sharif University, Tehran, Iran.
چکیده [English]

In this study, digital photography was used to estimate the amount of sugar beet’s canopy cover. For this purpose, a dataset of visible images of sugar beet crops, during the growing season, in 2018, under drought and nitrogen stress were taken in a greenhouse at the ETH research station for plant sciences in Lindau Eschikon, Switzerland. The treatments of this research included two levels of irrigation stress (low water and sufficient water) and three levels of fertilizer stress (20, 40, and 80 kg/ha nitrogen). Image discrimination and threshold algorithms are applied to perform segmentation on the images in Python. Compound segmentation methods using Excess Green, Excess Green minus Excess Red discrimination vegetation indices (plant from soil and background), and without discrimination index and manual input thresholding and Otsu and Triangle automated algorithms were used. Therefore, nine different compound methods including discrimination and thresholding algorithms used to estimate the canopy cover under different stresses. Results showed that compound methods of Excess Green minus Excess Red vegetation index and manual input thresholding and Excess Green Index and Otsu have the highest accuracy, 94.69 and 87.52 percent, respectively. The method without discrimination index and triangle thresholding which has 53.18 percent accuracy was the least accurate method.

کلیدواژه‌ها [English]

  • Discrimination
  • Drought stress
  • Nitrogen stress
  • segmentation
  • thresholding
  1. Abdullah, S. L. S., Hambali, H., & Jamil, N. (2012). Segmentation of natural images using an improved thresholding-based technique. Procedia Engineering, 41(Iris), 938-944. https://doi.org/10.1016/j.proeng.2012.07.266
  2. Al-amri, S. S., Kalyankar, N. V., & D., K. S. (2010). Image Segmentation by Using Threshold Techniques, 2. http://arxiv.org/abs/1005.4020
  3. An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought stress using deep convolutional neural network. Symmetry, 11(2), 1-14. https://doi.org/10.3390/sym11020256
  4. Aureliano Netto, A. F., Nogueira Martins, R., Aquino de Souza, G. S., Araújo, G. D. M., Hatum de Almeida, S. L., & Agnolette Capelini, V. (2018). Segmentation of rgb images using different vegetation indices and thresholding methods. Nativa, 6(4), 389. https://doi.org/10.31413/nativa.v6i4.5405
  5. Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
  6. Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4613-4618. https://doi.org/10.1073/pnas.1716999115
  7. Kamali, H., Zand-Parsa, S., & Zare, M. (2017). Estimation of canopy cover, leaf area index and leaf nitrogen content in sugar beet using digital photography. Journal of Sugar beet, 32(2), 123-133. https://doi.org/10.22092/jsb.2016.107217 (In Persian)
  8. Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R., & Liebisch, F. (2019). A spatio temporal spectral framework for plant stress phenotyping. Plant Methods, 15(1), 1-18. https://doi.org/10.1186/s13007-019-0398-8
  9. Kim, S.-H., Ryu, C.-S., Kang, Y.-S., & Min, Y.-B. (2015). Improved plant image segmentation method using vegetation indices and automatic thresholds. Journal of Agriculture & Life Science, 49(5), 333-341. https://doi.org/10.14397/jals.2015.49.5.333
  10. Kisalaei, A., Golmohammadzadeh, F., Rasouli Sharabiani, V., & Golmohammadi, A. (2014). Applicaton of image processing in precision agriculture. 3rd National Conference On Organic and Conventional Agriculture. (In Persian)
  11. Latifoltojar, S., Jafari, A., Nassiri, S. M., & Sharifi, H. (2014). Estimation of sugar beet yield based on crop canopy cover using image processing patterns. Journal of Agricultural Machinery, 4(2), 275-284. (In Persian)
  12. Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151-155. https://doi.org/10.1007/s12892-011-0029-z
  13. Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2), 282-293. https://doi.org/10.1016/j.compag.2008.03.009
  14. Moosavi, S. G. R., Ramazani, S. H. R., Hemayati, S. S., & Gholizade, H. (2017). Effect of drought stress on root yield and some morpho-physiological traits in different genotypes of sugar beet (Beta vulgaris). Journal of Crop Science and Biotechnology, 20(3), 167-174. https://doi.org/10.1007/s12892-017-0009-0
  15. Noda, K., Ezaki, N., Takizawa, H., Mizuno, S., & Yamamoto, S. (2006). Detection of plant saplessness with image processing. International Joint Conference SICE-ICASE. p. 4856-4860.
  16. Orak, H., Abdanan Mehdizeh, S., & Sadi, M. (2018). Predicting sugar beet performance by online image processing. Journal of Sugar beet, 34(2), 181-191. https://doi.org/10.22092/jsb.2019.120670.1178 (In Persian)
  17. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transaction on Systems, Man and Cybernetics, 20(1), 62-66.
  18. Poonguzhali, R., & Vijayabhanu, A. (2019). Crop condition assessment using machine learning. International Journal of Recent Technology and Engineering, 7(6), 897-900.
  19. Ridler, T. W., & Calvard, S. (1978). Picture thresholding using iterative selective method. IEEE Transactions on Systems, Man and Cybernetics, smc-8(8), 630-632.
  20. Riehle, D., Reiser, D., & Griepentrog, H. W. (2020). Robust index-based semantic plant/background segmentation for RGB-images. Computers and Electronics in Agriculture, 169(December 2019), 105201. https://doi.org/10.1016/j.compag.2019.105201
  21. Sadeghzadeh Hemayati, S., Fathollah Taleghani, D., & Fasahat, P. (2017). Effects of drought stress on quantitative and qualitative characteristics, canopy ground cover and wilting score of sugar beet genotypes. Environmental Stresses in Crop Sciences, 10(3), 363-375. (In Persian)
  22. Saxena, L., & Armstrong, L. (2014). A Survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, 401-413. https://doi.org/10.5120/20052-1983
  23. Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper No.66, October 2012, 505.
  24. Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Machine Vision and Applications, 26(4), 495-506. https://doi.org/10.1007/s00138-015-0670-5
  25. Thailambal, G., & Yogeshwari, M. (2020). Automatic segmentation of plant leaf disease using improved fast Fuzzy C-Means clustering and adaptive Otsu thresholding. European Journal of Molecular and Clinical Medicine, 7(3), 5447-5462. https://ejmcm.com/article_5513.html
  26. Wenhua Mao, Yiming Wang, & Yueqing Wang. (2003, November 15). Real-time Detection of Between-row Weeds Using Machine Vision. https://doi.org/10.13031/2013.15381
  27. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1), 259-269. https://doi.org/10.13031/2013.27838
  28. Yu, Y., Bao, Y., Wang, J., Chu, H., Zhao, N., He, Y., & Liu, Y. (2021). Crop row segmentation and detection in paddy fields based on treble-classification otsu and double-dimensional clustering method. Remote Sensing, 13(5), 1-25. https://doi.org/10.3390/rs13050901
  29. Zack, G. W., Rogers, E., & Latt, S. A. (1977). Automatic measurement of sister chromatid exchange frequency. The Journal of Histochemistry and Cytochemistry, 25(7), 741-753.