ارزیابی مدل بارش- رواناب- نگهداشت (3RM) در حوزه‌های آبخیز کسیلیان و درجزین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی و علوم آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

2 استاد، گروه مهندسی و علوم آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

چکیده

مدل‌های هیدرولوژیکی این امکان را می‌دهند تا با شبیه‌سازی فرایند بارش- رواناب، مقدار رواناب حاصل از بارندگی در حوزه‌های فاقد آمار یا دارای آمار ناقص با کم‌ترین هزینه و حداقل زمان، ارزیابی و برنامه‌ریزی برای مهار و مدیریت سیلاب‌ها صورت پذیرد. هدف از این مطالعه ارزیابی مدل بارش-رواناب-نگهداشت 3RM در حوزه‌های آبخیز کسیلیان و درجزین می‌باشد. مدل موردمطالعه یک مدل ریاضی است که بر مبنای مدل مفهومی SCS-CN نگارش شده و در آن به‌جای رطوبت پیشین از مقادیر نگهداشت مؤثر پیشین (IER) استفاده می‌گردد. پارامتر نگهداشت مؤثر پیشین نیز به‌روش بیلان آبی قابل محاسبه است. نتایج مطالعه حاضر نشان داد که حوزه آبخیز درجزین با ۳۸/۲۹ درصد پوشش سنگی و ۲۷/۳ درصد گروه هیدرولوژیکی A دارای پتانسیل نگهداشت ۶۶/۲۰ میلی‌متر و حوزه آبخیز کسیلیان با پوشش جنگلی 77 درصد و پوشش توده سنگی صفر از پتانسیل نگهداشت بسیار بیش‌تری (11/51 میلی‌متر) برخوردار است. مقدار  (نسبت نگهداشت مقدماتی به نگهداشت پتانسیل) نیز در حوزه کسیلیان 05/0 و در حوزه درجزین برابر با 13/0 حاصل شد. هم‌چنین، نتایج برازش مدل بر داده‌های بارش-رواناب نشان داد که شاخص‌های ارزیابی شامل ضریب تعیین، ریشه مربعات خطای میانگین، ریشه میانگین مربعات خطای نرمال و ضریب نش برای پیش‌بینی رواناب حوزه درجزین و کسیلیان به‌ترتیب (۹۹۸/۰، ۴۳۹/۰، 02۹/0، ۹۹۸/۰) و (۸59/۰، 009/1، ۲64/۰ و ۸67/۰) حاصل شد. با توجه به نتایج به‌دست‌آمده، می‌توان اذعان داشت مدل 3RM برای پیش‌بینی رواناب و نگهداشت واقعی در هر دو حوزه از توانایی قابل‌قبولی برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Rainfall-Runoff-Retention Model (3RM) in Kassilian and Darjazin Watersheds

نویسندگان [English]

  • saeedeh izadi 1
  • shayan shamohammadi 2
1 M.Sc. Graduated, Department of Water Engineering, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran.
2 Professor, Department of Water Engineering, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran.
چکیده [English]

Hydrological models make it possible to simulate the rainfall-runoff process, the amount of runoff from rainfall in areas without statistics or with incomplete statistics. One of the most practical and globally accepted rainfall- runoff model provided by American Soil Conversation Service, (SCS) known as SCS-CN where CN refer to Curve Numbers based on soil hydrological conditions. In this research, Rainfall-Runoff-Retention Model (3RM) was used introduced the new concept for rainfall Interceptions as Antecedent Effective Retention (IER) instead of the Antecedent Moisture Content (AMC) and calculating it by water balance method. SCS-CN model with this new revision were applied in Darjazin (semi-arid climate) and Kassilian (very humid climate) catchments in Iran. The results of the study showed that Darjazin watershed with 29.38 persent rock cover (D) and 3.27 persent hydrologic soil group (A) with a holding potential of 20.66 mm and Kassilian watershed with forest cover 77 persent and rock mass cover 0.0 persent has a lot of retention potential (51.11 mm). The value of α (ratio of initial retention to potential retention) was obtained between 0.05 and 0.13 in different basins. Also, the results of model fitting on rainfall-runoff data showed that the evaluation indices including coefficient of determination R2, RMSE, NRMSE and NSE for predicting runoff in Darjazin catchment (0.998, 0.439, 0.029, and 0.998) respectively, while the same indicators for the Kassilian watershed are (0.867, 0.264, 1.009 and 0.859) respectively. The results show that the model has an acceptable ability to predict runoff and actual retention in all two watersheds.

کلیدواژه‌ها [English]

  • Previous effective retention
  • Water Balance
  • Watershed
  • 3RM
  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.‏
  2. Ara, Z., & Zakwan, M. (2018). Estimating runoff using SCS curve number method. International Journal of Emerging Technology and Advanced Engineering, 8(5), 195-200.‏
  3. Azizian, A., & Shokoohi, A. (2014). Development of a New Method for Estimation of SCS Curve Number Based on Saturation Excess Concept. Iran-Water Resources Research, 10(3), 26-37. (In Persian)
  4. Ayman, A. & Hoogenboom, G. (2009). A comparison of ASCE and FAO-56 reference evapotranspiration for a 15-min time step in humid climate conditions. Journal of Hydrology, 375, 326-333.
  5. Bartlett, M. S., Parolari, A. J., McDonnell, J. J., & Porporato, A. (2016). Beyond the SCS‐CN method: A theoretical framework for spatially lumped rainfall‐runoff response. Water Resources Research, 52(6), 4608-4627.‏
  6. Buszney, M.(1989). Improving the efficency of SCS runoff curve number. Journal of Irrigation and Drainage Engineering, 115(1), 798-805.
  7. Ebrahimian, M., See, L., & Abdul Malek, I. (2009). Application of natural resources conservation service- curve number method for runoff estimation with GIS in the Kardeh watershed, Iran. European Journal of scientific research, 34(4), 575-590.
  8. Ebrahimian, M. (2012). Application of NRCS-curve number method for runoff estimation in a mountainous watershed. Caspian Journal of Environmental Sciences, 10(1), 103-114.‏
  9. Fazloula, R., & Akhound ali, A., & Behnia, A. (2007). Determination of runoff prediction equations in mountainous catchments (case study: amameh and kasilian representative catchments). Journal of agricultural sciences and natural resources, 13(6), 1-13. https://www.sid.ir/en/journal/ViewPaper.aspx?id=96694 (In persion)
  10. Gholami, V., & Bashirgonbad, M., & Azodi, M., & Jokar Sarhangi, E. (2010). The influence of land use changes on intensifying runoff generation and flood hazard in kasilian watershed. Iranian journal of watershed management science and engineering,3(9),55-57. https://www.sid.ir/en/journal/ViewPaper.aspx?id=215913 (In Persion)
  11. Hawkins, R. H. (1984). A comparison of predicted and observed runoff curve numbers. American Society of Civil Engineers.‏
  12. Huang, M., Gallichand, J., Dong, C., Wang, Z., & Shao, M. (2007). Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China. Hydrological Processes: An International Journal, 21(11), 1471-1481.‏
  13. Mahmoodi, M., & Honarmand, M., & Naseri, F., & Mohammadi, S. (2020). The Effect of Land Use Changes on the Flood Hydrograph in the Kashaf-Rood River by Analyzing of SCS-CN Results. Journal of water and soil (agricultural sciences and technology), 34(1), 43-54. https://www.sid.ir/en/journal/ViewPaper.aspx?id=758832 (In Persian)
  14. Michel, C., Andréassian, V., & Perrin, C. (2005). Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure?. Water Resources Research, 41(2).‏
  15. Mishra, S., & Singh, V. (1999). Another look at SCS-CN method. Journal of Hydrological Engineering 4, 257-264.
  16. Mockus, V. (1949). Estimation of total surface runoff for individual storms. Exhibit A, Appendix B, Interim Survey Rep., (Neosho) River Watershed USDA, Washington, DC.
  17. Moradkhani, H., & Sorooshian, S.( 2009). General review of rainfall-runoff modelling: model calibration data assimilation and uncertainty analysis. Advanced Water Resource, 28(2), 135-147.
  18. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.‏
  19. Muche, M. E., Hutchinson, S. L., Hutchinson, J. S., & Johnston, J. M. (2019). Phenology-adjusted dynamic curve number for improved hydrologic modeling. Journal of Environmental Management, 235, 403-413.‏
  20. Nandhakumar, S., Arsheya.S., & Kirtika Sri, V.K. (2019). Estimation of Precipitation Runoff Using SCS and GISApproach in Puzhal Watershed. International Journal of Civil Engineering and Technology (IJCIET), 10(1), 1978-1998.
  21. Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models: Part I-a discussion of principles. Hydrol., 10(3), 282-290.
  22. Ponce, V.M., & Hawkins, H.  (1996).  Runoff  curve  number: Has  it reached  maturity?. Journal of Hydrologic Engineering, 1 (1), 11-19.
  23. Sadeghi, S. H. R., Mahdavi, M., & Razavi, S. L. (2008). Importance of Calibration of Maximum Storage Index Coefficient and Curve Number in SCS Model in Amameh, Kasilian, Darjazin and Khanmirza Watersheds. (In Persion)
  24. Sahu, R. K., Mishra, S. K., & Eldho, T. I. (2010). An improved AMC‐coupled runoff curve number model. Hydrological Processes, 24(20), 2834-2839.‏
  25. Salarijazi, M., Ghorbani, K. H., & Abdolhosseini, M. (2017). Estimation of Surface Runoff Hydrograph in Ungauged Basin without Land Cover and Land Use Data, Irrigation & Water Engineering, 7(26), 46. magiran.com/p1707802. (In Persian)
  26. Seyyed Kaboli, H., & Akhond-Ali, A. (2009). Evaluation of Loss Methods to Simulate flood events (Case study: Kasilian Basin). Water and Soil, 23(3). doi: 10.22067/jsw.v0i0.2288 (In Persion)
  27. Shamohammadi, S. (2013). Presenting the new adsorption isotherm model. Second international conference on environmental hazarde, Kharazmi University–Tehran, Oct 29& 30 (In Persion)
  28. Shamohammadi, S. )2017(. Presenting the mathematical model to determine retention in the watersheds. European Water 57,207-213.
  29. Shamohamadi, S., & Razavi Vanani, L. (2018). Water Resources Engineering. Shahrekord University. (In Persian).
  30. Shamohamadi, S., & Zomorodian, M. (2013). Comparison of Soil Conservation Service Model SCS and the Bennett Soil Moisture Accounting Model (SMA-B) in the Flood Estimation Zard River Basin, Iranian Journal of Watershed Management Science and Engineering, 7(20), 9. magiran.com/p1193841. (In Persian)
  31. Singh, P. K., Mishra, S. K., Berndtsson, R., Jain, M. K., & Pandey, R. P. (2015). Development of a modified SMA based MSCS-CN model for runoff estimation. Water Resources Management, 29(11), 4111-4127.‏
  32. Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrology and Earth System Sciences, 13(5), 605-615.‏
  33. Sutradhar, H. (2018). Surface runoff estimation using SCS-C N method in Siddheswari River basin, Eastern India. Geog. Environ. Earth Sci. Int, 17(2), 1-9.‏
  34. Tabari, H., Talaee, P. H., Nadoushani, S. M., Willems, P., & Marchetto, A. (2014). A survey of temperature and precipitation based aridity indices in Iran. Quaternary International, 345, 158-166.‏
  35. USDA Soil Conservation Service. (1972). National engineering handbook, Section 4: Hydrology, Chapters 4-10, Washington, DC., 15(7), 15-11.
  36. Vaezi, A., & Abbasi, M. (2012). Efficiency of the SCS-CN Method in Estimating Runoff in Taham Cahi Watershed, North West of Zanjan. JWSS-Isfahan University of Technology, 16(61), 209-219.‏
  37. Wang, J. J., Ding, J. L., Zhang, Z., & Chen, W. Q. (2017, February). Improved Algorithm of SCS-CN Model Parameters in Typical Inland River Basin in Central Asia. In IOP Conference Series: Earth and Environmental Science (57(1),012051). IOP Publishing.‏
  38. Williams, J. R., Kannan, N., Wang, X., Santhi, C., & Arnold, J. G. (2012). Evolution of the SCS runoff curve number method and its application to continuous runoff simulation. Journal of Hydrologic Engineering, 17(11), 1221-1229.‏