مدیریت تغذیه مصنوعی آبخوان دشت شهریار با مدل شبیه‌سازی-بهینه‌سازی چند هدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استاد، گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار، گروه زراعت، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

4 استادیار، گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

رشد جمعیت و توسعه بخش کشاورزی و صنعت، باعث کاهش چشمگیر منابع آب زیرزمینی شده‌اند. با توجه به این موضوع یکی از راه حل‏های مفید و موثر به منظور بهره‌برداری بهینه از آبخوان‏ها، اجرای سیستم‏های تغذیه مصنوعی می‏باشد. در این تحقیق، با استفاده از مدل ریاضی (HEC- HMS)، روندیابی سیلاب در رودخانه کرج و مخازن سیستم تغذیه مصنوعی انجام شد. سپس حجم ذخیره در مخازن سیستم تغذیه مصنوعی توسط شبکه عصبی مصنوعی (ANN) شبیه‌سازی و در نهایت وارد الگوریتم ژنتیک چند‌هدفه (NSGA-II)، شد. از الگوریتم ژنتیک چند‌هدفه (NSGA-II) به منظور بهره‌برداری بهینه از سیستم تغذیه مصنوعی با توجه به تغییرات سطح بهینه آب زیرزمینی استفاده شد. بر اساس نتایج حاصل شده، مجموع حجم تغذیه بهینه در سال آبی 93 تا 95 توسط سیستم تغذیه مصنوعی برابر 94/97 میلیون متر مکعب شده و نیز تغییرات سطح بهینه آب زیرزمینی به اندازه 62/2 متر افزایش یافته است. بنابراین با تخصیص حجم بهینه از سد انحرافی بیلقان به سیستم تغذیه مصنوعی، حجم تغذیه بهینه و نیز تغییرات سطح بهینه آب زیرزمینی در بازه زمانی مورد نظر، نسبت به شرایط فعلی افزایش یافته‌اند. با توجه به اینکه، حجم تغذیه بهینه و تغییرات سطح بهینه آب زیرزمینی متناسب با یکدیگر می‏باشند، این عملکرد باعث بهبود شرایط آبخوان خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Artificial recharge management of Shahriar plain aquifer with multi-objective simulation-optimization model

نویسندگان [English]

  • Nima Salehi-Shafa 1
  • Hossein Babazadeh 2
  • Fayaz Aghayari 3
  • Ali Saremi 4
1 Ph.D. Student of Irrigation and Drainage, Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Professor, Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Assistant Professor, Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran.
4 Assistant Professor, Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Population growth and the development of agriculture and industry have led to a significant reduction in groundwater resources. According to this issue, one of the useful and effective solutions for the optimal operation of aquifers is the implementation of artificial feeding systems. In this research, using mathematical model (HEC-HMS), flood routing in Karaj river and artificial feeding system reservoirs was performed. In this study, Considering to the mathematical model (HEC-HMS), flood routing was performed in Karaj river and artificial recharge system reservoirs. Then the storage volume in the artificial recharge system reservoirs was simulated by an artificial neural network and finally entered into a multi-objective genetic algorithm (NSGA-II). Multi-objective genetic algorithm (NSGA-II) was used for optimal utilization of the artificial recharge system , Considering to the optimal groundwater level changes. Based on the results, the total volume of optimal recharge in the desired time period by the artificial recharge system is equal to 97.94 million cubic meters and also optimal groundwater level changes have increased by 2.62 meters. Therefore, by allocating the optimal volume of the Bilqan diversion dam to the artificial recharge system, the optimal recharge volume and also optimal groundwater level changes in the desired time period have increased compared to the current conditions. considering that the optimal recharge volume and optimal groundwater level changes are proportional to each other, this performance will improve the aquifer conditions.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Multi-objective Genetic Algorithm
  • Optimal Groundwater Level Changes
  • Optimal Utilization
  1. Aju, C. D., Achu, A. L., Raicy, M. C., & Reghunath, R. (2021). Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River Basin, South India. HydroResearch4, 24-37.
  2. Alkhatib, J., Engelhardt, I., & Sauter, M. (2021). Identification of suitable sites for managed aquifer recharge under semi-arid conditions employing a combination of numerical and analytical techniques. Environmental Earth Sciences, 80(17), 1-14.
  3. Derdour, A., Bouanani, A., & Babahamed K. (2017). Hydrological modeling in semi-arid region using HEC-HMS model, case study in Ain Sefra Watershed, Ksour Mountains (SW-Algeria). Journal of Fundamental and Applied Sciences, 9(2), 1027-1049.
  4. Dhanaraj, G. (2021). Study of selected influential criteria on groundwater potential storage using geospatial technology and multi-criteria decision analysis (MCDA) approach: A case study. The Egyptian Journal of Remote Sensing and Space Science.
  5. Ebrahim, G.Y., Andreja J., Al-Maktoumi A., Mushtaque A., & Mynett, A. (2016). Simulation-Optimization Approach for Evaluating the Feasibility of Managed Aquifer Recharge in the Samail Lower Catchment, Oman. Journal of Water Resources Planning and Management, 142 (2), 5015007.
  6. Hao, Q., Shao, J., Cui, Y., Zhang, Q., & Huang, L. (2018). Optimization of groundwater artificial recharge systems using a genetic algorithm: a case study in Beijing, China. Hydrogeology Journal, 26(5),1749-61.
  7. Hashemi, H., Berndtsson, R., &  Persson, M. (2015) Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. Hydrological Sciences Journal,  60(2), 336-50.
  8. Jasrotia, A. S., Kumar, R., Taloor, A. K., & Saraf, A. K. (2019). Artificial recharge to groundwater using geospatial and groundwater modelling techniques in North Western Himalaya, India. Arabian Journal of Geosciences12(24), 1-23.
  9. Jiang, A., Liu, Y., Yi, S., Guo, Z., Cui, Y., Huang, Q., Li, J., Liu, K., Qiu, M., &  Jin, X. (2021). Impact of artificial recharge on groundwater and springs: Jinan, China, case study. Arabian Journal of Geosciences, 14(2),1-0.
  10. Kaboosi, K., &  Jelini, R. (2017). The efficiency of detention reservoirs for flood control on the Jafar Abad River in Golestan Province (Iran). Russian Meteorology and Hydrology, 42(2), 129-134.
  11. Karamouz, M., Teymoori, J., & Olyaei, M.A. (2021). A Spatial Non-Stationary Based Site Selection of Artificial Groundwater Recharge: a Case Study for Semi-Arid Regions. Water Resources Management, 35(3), 963-78.
  12. Kawo, N.S., Zhou, Y., Magalso, R., &  Salvacion, L. (2018). Optimization of an artificial-recharge–pumping system for water supply in the Maghaway Valley, Cebu, Philippines. Hydrogeology Journal, 26(3), 963-77.
  13. Knebl, M. R., Yang, Z. L., Hutchison, K., & Maidment, D. R. (2005). Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, 75(4), 325-336.
  14. Kumari, S., Poddar, A., Kumar, N., & Shankar, V. (2021). Delineation of groundwater recharge potential zones using the modeling based on remote sensing, GIS and MIF techniques: a study of Hamirpur District, Himachal Pradesh, India. Modeling Earth Systems and Environment, 21,1-2.
  15. Liu, Q., Hanati, G., Danierhan, S., Zhang, Y., &  Zhang, Z. (2021). Modeling of multiyear water-table fluctuations in response to intermittent artificial recharge. Hydrogeology Journal,1-4.
  16. Makkawi, M.H. (2015). Geostatistics as a groundwater exploration planning tool: case of a brackish-saline aquifer. Arabian Journal of Geosciences, 8(5), 3311-9.
  17. Martín-Rosales, W., Gisbert, J., Pulido-Bosch, A., Vallejos, A., & Fernández-Cortés, A. (2007). Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environmental Geology52(5), 985-995.
  18. Masetti, M., Pedretti, D., Sorichetta, D., Stevenazzi, S., &  Bacci, F. (2016), Impact of a Storm-Water Infiltration Basin on the Recharge Dynamics in a Highly Permeable Aquifer, Water Resources Management, 1, 149-165.
  19. Mendes, J. &  Maia, R. (2016). Hydrologic modelling calibration for operational flood forecasting. Water Resources Management, 30(15), 5671-5685.
  20. Mohammadi, J., &  Motaghian, M.H. (2011). Spatial Prediction of Soil Aggregate Stability and Aggregate-Associated Organic Carbon Content at the Catchment Scale Using Geostatistical Techniques. Pedosphere, 21(3), 399-389.
  21. Mohammadzadeh-Habili, J., &  Khalili, D. (2020). Assessment of artificial recharge dams and improvement of their groundwater-recharge capacity. Journal of Hydrologic Engineering, 25(5), 04020011.
  22. Mokarram, M., Saber, A., Mohammadizadeh, P., & Abdolali, A. (2020). Determination of artificial recharge location using analytic hierarchy process and Dempster–Shafer theory. Environmental Earth Sciences79(10), 1-15.
  23. Moreno, J., S. Begueria &  J.M.T. Ruiz. (2002). Influence of the Yasa reservoir of the Aragon River.Central Spanish Pyrenees.Hydrology and Earth system sciences, 6(4), 753-762.
  24. Rahimi, S., Roodposhti, M.S., &  Abbaspour, R.A. (2014). Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environmental earth sciences, 72(6),1979-92.
  25. Ringleb, J., Sallwey, J., & Stefan, C. (2016). Assessment of managed aquifer recharge through modeling—A review. Water, 8(12), 579.
  26. Sayit, A. P., & Yazicigil, H. (2012). Assessment of artificial aquifer recharge potential in the Kucuk Menderes River Basin, Turkey. Hydrogeology Journal20(4), 755-766.
  27. Xu, W., &  Du, S. (2014). Information entropy evolution for groundwater flow system: a case study of artificial recharge in Shijiazhuang City, China. Entropy,16(8), 4408-19.
  28. Yahiaoui, B., Agoubi, B., & Kharroubi, A. (2021). Groundwater potential recharge areas delineation using groundwater potential recharge index (GPRI) within arid areas: Ghomrassen, south Tunisia. Arabian Journal of Geosciences14(11), 1-13.
  29. Zhang, W., Huan, Y., Yu, X., Liu, D., &  Zhou, J. (2015). Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge. Journal of environmental management, 152, 109-19.