مدلسازی کیفیت آب سطحی در حوضه آبریز سد جیرفت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی عمران، مدیریت منابع آب، گروه مهندسی آب، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

2 استادیار، پژوهشکده انرژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

3 استادیار، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

چکیده

یکی از منبع آلودگی آب سطحی، مدیریت ضعیف پسماندهای کشاورزی است. در این پژوهش کیفیت آب سحطی حوضه آبریز سد جیرفت با استفاده از مدل QSWAT مدلسزی شد. منطقه مورد مطالعه با وسعت 783446/81 هکتار در بالادست سد جیرفت در استان کرمان واقع شده است. مدل بارش-رونآب حوضه آبریز منطقه مطالعاتی برای یک دوره 21 ساله با گام زمانی ماهانه از سال 2000 لغایت 2020 شبیه‌‌سازی شد. به عنوان داده‌های مشاهده‌ای دبی جریان از ایستگاه هیدرومتری کنارویه و برای داده‌های هواشناسی ورودی مدل از اطلاعات ایستگاه سینوپتیک بافت استفاده شد. واسنجی و اعتبارسنجی نتایج دبی شبیه‌سازی شده ، با استفاده از الگوریتم خودکارSUFI-2 در نرم افزار SWAT-CUP به ترتیب برای سال‌های (2011-2019) و (2008-2010) انجام گرفت. نتایج الگوریتم SUFI-2 برای دوره واسنجی با ضرایب همبستگی و نش-ساتکلیف به ترتیب 0/79 و 0/77 و برای دوره اعتبارسنجی 0/81 و 0/82 بدست آمد. آنالیز حساسیت برای 12 پارامتر واسنجی انجام شد که هدایت هیدرولیکی اشباع خاک به عنوان حساس‌ترین پارامتر به دست آمد.. کیفیت آب سطحی حوضه آبریز سد جیرفت با اضافه کردن کود شیمایی مصرفی اوره در سطح زیرکشت این منطقه شبیه سازی شد. نتایج کیفیت آب سطحی از نظر مقدار بار نیترات شبیه سازی شده در مدل QSWAT با نتایج آزمایشگاهی مقایسه شد. نتایج مدل کیفیت آب سطحی نسبت به نتایج آزمایشگاهی از تطابق خوبی برخوردار بود. نتایج نشان دادند که استفاده از QSWAT در مدلسازی حوضه‌ آبریز به منظور پیش‌بینی و مدیریت منابع آبی می‌تواند روشی موثر و کارآمد باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Surface water quality modeling in Jiroft dam watershed

نویسندگان [English]

  • Elahe Ahmadi Rad 1
  • Sadegh ghazanfari 2
  • Sedigheh Anvari 3
1 Master of Civil Engineering, Water Resources Management, Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran.
2 Assisstant Professor, Department of Energy, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran.
3 Assisstant Professor, Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran.
چکیده [English]

Poor management of agricultural waste is one of the sources of water pollution. In this study, the surface water quality of Jiroft Dam watershed was modeled using the QSWAT model. The study area is located at the upstream of Jiroft Dam watershed with the total area of 783446.81 hectares in Kerman province. The rainfall-runoff model was simulated over the 21 years from 2000 to 2020 for a monthly time step. Data from Konaroye hydrometric station was used as observed flow data. The meteorological data was collected from Baft synoptic station. The model was calibrated and validated using the SUFI-2 automated algorithm in SWAT-CUP software for periods (2011-2019) and (2008-2010), respectively. The final results of determination and Nash-Sutcliffe coefficients from calibration and validation processes obtained 0.79, 0.77, 0.81 and 0.82, respectively. Sensitivity analysis was performed for 12 calibration parameters. The results show that base-flow alpha factor is the most sensitive parameter. After modeling of the flow rates in watershed, in next step surface water quality was modeled in QSWAT by considering Urea as fertilizer which is mostly used on the area under cultivation of Jiroft Dam watershed. The results for Nitrate load show that model prediction is in good agreement with the experimental data. The results of this study show that QSWAT model can be used as an effective and efficient method in order to predict surface water quality and managing of water resources.

کلیدواژه‌ها [English]

  • Flow
  • Jiroft Dam watershed
  • nitrate load
  • QSWAT model
  1. Anonymous. (2016). Statistical Yearbook of Kemran Province 1395.
  2. A.Salvador, C. G. (2019). Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a KarstWatershed of the Semiarid Mediterranean Basin. Water Resources Management, doi:10.1007/s11269-019-02477-4.
  3. Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027.
  4. Abbaspour, K. C., Vaghefi, S. A., Yang, H., & Srinivasan, R. (2019). Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications. Sci Data, 6(1), 263. doi:10.1038/s41597-019-0282-4.
  5. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430. doi:10.1016/j.jhydrol.2006.09.014.
  6. Anvari, S. (2018). Probabilistic Forecasts of Streamflow Scenarios Using ESP Approach (Case study: Halil River). Journal of Irrigation Sciences and Engineering, 41(3), 75-87. (In Persian).
  7. Vilaysane, B., Takara, K., Luo, P., Akkharath, I., & Duan, W. (2015). Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environmental Sciences, 28, 380-390. doi:10.1016/j.proenv.2015.07.047.
  8. Rajai, ., Slamanmahini, A., Delavar, M., & Mesahbouvani, A. (2016). Modelling of nitrate contamination caused from non-point sources and prioritization of critical sub-basins for enviornmental management of TAJAN  watershed, Eco Hydrology. (In persian).
  9. Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N. H., Dijkshoorn, K., van Engelen, V. W. P., ... & Montanarela, L. (2010). The harmonized world soil database. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1-6 August 2010 (pp. 34-37).
  10.  Giri, S., & Qiu, Z. (2016). Understanding the relationship of land uses and water quality in Twenty First Century: A review. J Environ Manage, 173, 41-48, doi:10.1016/j.jenvman.2016.02.029.
  11. Abbaspour, K. C., Vaghefi, S. A., Yang, H., & Srinivasan, R. (2019). Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications. Scientific data, 6(1), 1-11. doi:10.1038/s41597-019-0282-4.
  12. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., ... & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4), 413-430. doi:10.1016/j.jhydrol.2006.09.014.
  13. Khalid, K., Ali, M. F., Abd Rahman, N. F., Mispan, M. R., Haron, S. H., Othman, Z., & Bachok, M. F. (2016). Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia engineering, 162, 441-447. doi:10.1016/j.proeng.2016.11.086.
  14. Liu, Y., Li, H., Cui, G., & Cao, Y. (2020). Water quality attribution and simulation of non-point source pollution load flux in the Hulan River basin. Sci Rep, 10(1), 3012. doi:10.1038/s41598-020-59980-7.
  15. Goodarzi, M. R., Zahabiyoun, B., Massah Bavani, A. R., & Kamal, A. R. (2012). Performance comparison of three hydrological models SWAT, IHACRES and SIMHYD for the runoff simulation of Gharesou basin. Water and Irrigation Management, 2(1), 25-40.
  16. Ebrahimi, M., Barani, Gh. A., & Ghaeini Hesarovieh, M. (2017). Evaluation of  Area-Increment and Area-Reduction Methods to Predict Sediment Distribution of reservoir. Paper presented at the 16th Iranian Hydraulic Conference, Ardebil, Iran, https://civilica.com/doc/727634. (In Persian).
  17. Shafiei, M., Kamran Davari, H. A., & Ghahraman, B. (2013). Calibration and uncertainty analysis of a semi-distributed model in a semi-arid region(Case study of Neishabour watershed). Journal of Science and Technology of Agriculture and Natural Resources, 17(64). (In Persian).
  18. Marcinkowski, P. A. W. E. Ł., Piniewski, M. I. K. O. Ł. A. J., Kardel, I. G. N. A. C. Y., Gielczewski, M., & Okruszko, T. O. M. A. S. Z. (2013). Modelling of discharge, nitrate and phosphate loads from the Reda catchment to the Puck Lagoon using SWAT. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 45(2).
  19. Qiu, Z., & Wang, L. (2014). Hydrological and Water Quality Assessment in a Suburban Watershed with Mixed Land Uses Using the SWAT Model. Journal of Hydrologic Engineering, 19(4), 816-827. doi:10.1061/(asce)he.1943-5584.0000858
  20. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
  21. Akhavan, S., Abedi-Koupai, J., Mousavi, S. F., Afyuni, M., Eslamian, S. S., & Abbaspour, K. C. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems and Environment, 139(4), 675-688. https://doi.org/10.1016/j.agee.2010.10.015
  22. Nguyen, V. T., Dietrich, J., Uniyal, B., & Tran, D. A. (2018). Verification and correction of the hydrologic routing in the soil and water assessment tool. Water, 10(10), 1419.