برآورد حجم آب مصرفی در بخش کشاورزی پایین‌دست سد حسنلو با استفاده از الگوریتم METRIC

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد سنجش از دور، مرکز تحقیقات سنجش از دور (RSRC)، دانشگاه صنعتی شریف، تهران، ایران.

2 دانشیار، گروه انرژی های نو و محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران.

3 استاد، مدیر مرکز تحقیقات سنجش از دور (RSRC)، دانشکدۀ مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران.

چکیده

توسعه بی رویه اراضی کشاورزی، کاشت محصولات با نیاز آبی بالا در سطح حوضه آبخیز دریاچه ارومیه و همچنین راندمان پایین آبیاری سبب کاهش چشمگیر سطح دریاچه در سال‌های اخیر گردیده است، بنابراین برآورد مصرف آب در بخش کشاورزی می تواند در مدیریت صحیح بخش کشاورزی و مدیریت منابع آب کارآمد واقع گردد. در این مطالعه با استفاده از الگوریتم METRIC و تصاویر ماهواره Landsat 8 و MODIS مقادیر تبخیرتعرق واقعی برای بخشی از حوضه آبخیز دریاچه ارومیه - اراضی پایاب سد حسنلو- برای سال های 1394 و 1395 شمسی تخمین زده شده است. سپس با در نظر گرفتن بارش در ایستگاه سینوپتیک نقده به‌عنوان نماینده بارش در منطقه موردمطالعه، میزان آب آبیاری مصرف‌شده در بخش کشاورزی در پایین‌دست سد حسنلو تخمین زده شد و با مقدار آب تخصیص داده‌شده به این سد و حجم آب تخمین زده‌شده توسط سامانه WaPOR مقایسه گردید. براساس نتایج بدست آمده از الگوریتم METRIC مقادیر تبخیر و تعرق محاسبه شده از تصاویر ماهواره Landsat هشت، 468 و 315 میلی متر و از تصاویر ماهواره MODIS، 240 و 208 میلی متر برای سال‌های 1394 و 1395 محاسبه شده است. میزان مصرف تخمینی از الگوریتم METRIC، اختلاف قابل‌توجهی با مقادیر تخصیص داده‌شده و سامانه WaPOR دارد به‌طوری‌که تقریباً در تمام ماه‌های دو سال مذکور، مقادیر برآورد شده بسیار بیشتر از مقادیر آمار زمینی و سامانه WaPOR است. این اختلاف میان METRIC با آمار زمینی و با سامانه WaPOR در منطقه مطالعاتی به ترتیب برابر 23 و 26/6 میلیون مترمکعب محاسبه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of water consumption in the downstream agricultural area of Hasanlu Dam using METRIC algorithm

نویسندگان [English]

  • Fatemeh Kordi 1
  • Hossein Yousefi 2
  • Masoud Tajrishi 3
1 M.Sc. of Remote Sensing, Researcher of Remote Sensing Research Center (RSRC), Sharif university of Technology, Tehran, Iran.
2 Associate professor, Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
3 Professor, Director of Remote Sensing Research Center (RSRC), Faculty of Civil Engineering, Sharif university of Technology, Tehran, Iran.
چکیده [English]

Irregular development of agricultural areas, crops planting with high water need in the Urmia Lake Basin and also low irrigation efficiency have caused a significant reduction in the lake surface in recent years, so estimating water consumption in agriculture can be efficient in both accurate agriculture management and water resources management. In this context, by using METRIC algorithm and Landsat 8 and MODIS satellite images, the actual evapotranspiration have been estimated for a part of the Urmia Lake basin - Hasanlu dam downstream - in the year 2015 and 2016. Therefore, by considering the percipitation at Naghadeh station as the representative of percipitation in the study area, the valoum of irrigation water used in the agricultural area downstream of Hasanlu Dam was estimated. Then, the valoum of water allocated to this dam and estimation water volume was compared to the WaPOR product. The estimated values for Landsat 8 are 468 and 315 mm and for MODIS, 240 and 208 mm for 2015 and 2016, respectively. The estimated usage of the METRIC algorithm is significantly different from the allocated values and the WaPOR system. The estimated values are far higher than the ground statistics and the WaPOR system for nearly all months of the two years. The difference between METRIC and ground statistics and WaPOR product in the study area is calculated equal 23 and 26.6 million cubic meters, respectively.

کلیدواژه‌ها [English]

  • Evapotranspiration
  • Hasanlu Dam
  • METRIC
  • Urmia Lake Basin
  1. Allen, R., Tasumi, M., Trezza, R., Waters, R., & Bastiaanssen, W. (2002). SEBAL (Surface Energy Balance Algorithms for Land). Advance Training and Users Manual–Idaho Implementation, version, 1, 97.
  2. Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering133(4), 380-394.
  3. Bagheri Haroni, MH. (2011). Evaluating remote sensing to estimate water balance in regional scale harvest ground water Emphasizing the net purification of groundwater (case study: Urmia Lake basin), M.Sc. thesis, TMU university.[Persian]
  4. Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of hydrology229(1), 87-100.
  5. Blatchford, M.L., Mannaerts, C.M., Zeng, Y., Nouri, H., & Karimi, P. (2020). Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data. Remote Sens, 12, 2949.
  6. Burt, C.M., Clemmens, A.J., Strelkoff, T.S., Solomon, K.H., Bliesner, R.D., Hardy, L.A., Howell, T.A., Eisenhauer, D.E. (1997). Irrigation performance measures: efficiency and uniformity. Irrig. Drain. Eng. ASCE, 123 (6), 423-442.
  7. Castaño, S., Sanz, D., & Gómez-Alday, J. J. (2010). Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water resources management, 24(4), 795-814
  8. Chavez, J.L., & Mkhwanazi, M.M. (2013). Mapping evapotranspiration with the remote sensing ET algorithms METRIC and SEBAL under advective and non-advective conditions: accuracy determination with weighing Lysimeters. Civil and Environmental Engineering Department Colorado State University Fort Collins, Pp: 67-72.
  9. Faci, J.M., Bensaci, A., Saltni, A., & Playán, E., (2000). A case study for irrigation modernisation. I. Characterisation of the district and analysis of water delivery records. Agric. Water Manage, 42, 315-334..
  10. fahmadaali, J., Barani, G. A., Qaderi, K., & Hessari, B. (2018). Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water, 10(2), 160.‏ (in Persian)
  11. (2012). Aquastat: FAO’s information source. FAO. www.fao.org/nr/water/aquastat/water_use (accessed 9 Nov. 2012).
  12. Frenken, K., Kiersch, B., & Land, F. A. O. (2011). Monitoring agricultural water use at country level. Food Agric Organ United Nations.
  13. Haley, M. B., Dukes, M. D., & Miller, G. L. (2007). Residential irrigation water use in Central Florida. Journal of Irrigation and Drainage Engineering133(5), 427-434. Wagle, P., Gowda, P.H., (2019). Editorial for the Special Issue “Remote Sensing of Evapotranspiration (ET)”. Multidisciplinary Digital Publishing Institute.
  14. Hamimed, A., Khaldi, A., Mederbal, K., & Seddini, A. (2009, May). Estimation of daily actual evapotranspiration in Algerian semiarid environment with satellite ASTER. In Remote Sensing for a Changing Europe: Proceedings of the 28th Symposium of the European Association of Remote Sensing Laboratories, Istanbul, Turkey, 2-5 June 2008(p. 448). IOS Press.
  15. http://www.fao.org/in-action/remote-sensing-for-water-productivity/WaPOR/en/#/home, Acssess date, (2021)
  16. Javadian, M., Behrangi, A., Gholizadeh, M., & Tajrishy, M. (2019). METRIC and WaPOR estimates of evapotranspiration over the Lake Urmia Basin: comparative analysis and composite assessment. Water, 11(8), 1647. (In Persian).
  17. Javadian, M., Kordi, F., & Tajrishy, M. (2019). Evaluation and comparison of estimation methods for actual evapotranspiration in the Urmia Lake Basin. Iranian journal of Ecohydrology6(1), 125-136 (In Persian).
  18. Lian, J., & Huang, M. (2016). Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agricultural Water Management, 165, 153-162.
  19. Liaqat, U.W., & Choi, M. (2015). Surface energy fluxes in the Northeast Asia ecosystem: SEBS and METRIC models using Landsat satellite images. Agricultural and Forest Meteorology, 214, 60-79.
  20. Mahab Quds Consulting Engineering. (2013). Upgrading the comprehensive water plan of the countryin Aras basins (Talesh, Talab Anzali), Great Sefidrud , between Sefidrud and Haraz (Haraz-Gareh su), (Gorganrud-Gareh su), Atrak, Urmia, Agricultural Studies Of Lake Urmia catchment area. (in Persian)
  21. Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote sensing of Environment111(4), 519-536.
  22. Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote sensing of environment115(8), 1781-1800.
  23. Nishida, K., Nemani, R. R., Running, S. W., & Glassy, J. M. (2003). An operational remote sensing algorithm of land surface evaporation. Journal of Geophysical Research: Atmospheres (1984–2012)108(D9).
  24. (2010). Sustainable management of water resources in agricul-ture. OECD Publ.www.oecd.org (accessed 9 May 2014).
  25. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. science313(5790), 1068-1072.
  26. Olgarenko VI, Olgarenko GV, Olgarenko IV. A. (2018) method of integral efficiency evaluation of water use on irrigation systems. International Multidisciplinary Scientific GeoConference: SGEM. 18(3.1):3-9.
  27. Parris, K. (2010). Sustainable management of water resources in agriculture. OECD Publishing.
  28. Pôças, I., Paoç, T., Cunha, M., Andrade, J., Silvestre, J., Sousa, A., Santos, F., & Pereira, L. (2014). Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithm. Biosystem engineering, Pp: 1-13.
  29. Tang, R., Li, Z.-L., & Tang, B. (2010). An application of the T s–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 114, 540-551.
  30. Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 20(226), 105805.
  31. Wasti, S. (2020). Estimation of land surface Evapotranspiration in Nepal using Landsat based METRIC model. arXiv preprint arXiv:2007.13922.
  32. Wetherald, R. T., & Manabe, S. (1988). Cloud feedback processes in a general circulation model. Journal of Atmospheric Sciences45(8), 1397-1416.
  33. Yanfei, M. Shaomin, L., Lisheng, S., Ziwei, X., Yaling, L., Tongren, X., & Zhongli, Z. (2018). Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216, 715-734.
  34. Yekom Consulting engineering. (2016). Implementation of 40 percent reduction in agricultural water consumption in the Zarrine-Rud and Simin-e Hidro rivers basin (case study: Saeen ghalee and miandoab). [Persian]