بررسی ضخامت فیلتر شنی بر تصفیه آب در آبیاری قطره ‏ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 دانش‌آموخته کارشناسی ارشد، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

استفاده از سامانههای آبیاری قطرهای در کشاورزی با مزایای متعددی همراه است، انسداد فیلترها و قطره‌چکانها و در نتیجه کاهش یکنواختی پخش آب مسئله‏ای است که طرح و ساخت مناسب فیلتر می‏تواند یکی از این راهکارهای حل مناسب آن مسئله باشد. در این مطالعه از یک مدل فیزیکی شامل یک مخزن فیلتر به ارتفاع یک متر و قطر 60 سانتی‏متر جهت جایگذاری شن و ماسه با دانه‏بندی مختلف و ضخامت لایه متفاوت به‏همراه یک پمپ با توان 0.5 اسب بخار به‏منظور تامین فشار، دو عدد فشارسنج برای تعیین افت بار هیدرولیکی در فیلتر شنی، آب خام با کیفیت مشخص استفاده شد. از 9 تیمار دانهبندی و لایهبندی و دو تیمار کیفیت آب حاوی مقادیر مواد معلق در آن استفاده شد. دانه ‏بندی این تیمارها به ترتیب 1.77، 0.89 و 0.45 میلی‏متر بود. نتایج نشان داد تغییرات افت بار در بازه‌ دانه ‏بندی 1.77– 0.89 کمتر از بازه ی 0.89– 0.45 است و با ریزتر شدن اندازه ذرات شن افت بار افزایش یافت. نتایج نشان داد تغییرات درصد تصفیه در بازه ی دانه بندی 1.77– 0.89 کمتر از بازه ی 0.89– 0.45 می باشد و با افزایش ارتفاع لایه وسط درصد تصفیه فیلترها افزایش یافت. اما تغییرات درصد تصفیه به ازای تغییر ارتفاع از 12 تا 17 سانتی‏متر بیشتر از تغییرات درصد تصفیه از 17 تا 22 سانتی‏متر بود. ذرات رس، بقایای گیاهی، حشرات جزء مواد معلق در آب می‏باشند که بایستی برای آبیاری قطره‏ای توسط فیلترها تصفیه شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Sand Filter Thickness on Water Treatment in Drip Irrigation

نویسندگان [English]

  • Omid Raja 1
  • Farhad Mirzaei 2
  • Esmail Shahriyari 3
1 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
2 Associate Professor, Department of Irrigation and Reclamation, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
3 Former M.Sc. Student, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

The use of drip irrigation systems in agriculture is associated with several problems. Clogging of filters and drippers and, thus reducing the uniformity of water distribution needs to be addressed. Proper design and construction of the filter can be one of these suitable solutions to the problem. In this study, a physical model including a filter tank with a height of one meter and a diameter of 60 cm for placing sand with different sand size and thickness of different layers along with a pump, a power of 0.5 horsepower to provide pressure, two pressure gauges were used to determine the hydraulic load losses in the sand filter and, raw water of specified quality. 9 treatments of granulation and layering and, two treatments of water quality containing the amount of suspended solids were used. The aggregation of these treatments was 1.77, 0.89, and 0.45 mm, respectively. The results showed that the load loss changes in the granulation range of 0.89 – 1.77 mm is less than the range of 0.45–0.89 mm. the load loss increased with the smaller particle size of sand. The results showed that the percentage change of filtration in the granulation range of 1.77 - 0.89 is less than the range of 0.45 - 0.89 mm and with increasing the height of the middle layer, the percentage of filtration of filters increased. The results showed that the percentage change of filtration in the granulation range of 0.89 – 1.77 mm is less than the range of 0.45 - 0.89 mm. The percentage of filtration increased with increasing the height of the middle layer. But, the changes in the percentage of filtration for changing the height from 12 to 17 cm were more than the changes in the percentage of filtration from 17 to 22 cm. Clay particles, plant debris, insects are water-soluble substances that must be refined by filters for drip irrigation.

کلیدواژه‌ها [English]

  • Drip irrigation
  • Sand filter
  • Thickness
  • Water treatment
1. Ahmadi, M., Lashkarry, H., Freedom, M., & keykhsrovi, Q. (2015). Detection of climate change using parameters and precipitation in khorasan. Knowledge of Earth Knowledge Research, 6(23), 34-52. (In Persian).
2. Alaetaleghani, M. (2009). Geomorphology of Iran. Tehran,ghomos publication.
3. Alijani, B. (2011). Spatial analysis of critical damages and critical pressures in iran. Journal of Applied Geosciences Research, 11(20), 9-30.
4. Cheeloong, W., Juneng, L., Zulkifli, Y., Tarmizi, I., Raymond, V., & Stefan, U. (2016). Rainfall characteristics and regionalization in peninsular malaysia based on a high resolution gridded data set. Journal of Water Research, 8(11), 500.
5. Darend, M. (2014). Analysis of variations in rainfall and temperature extremes in urmia as indicators of climate change. Journal of Water and Soil Conservation Research, 21(2), 1-29. (In Persian).
6. Delima, M., Santo, F., Ramos, A., & Delima, J. (2013). Recent changes in daily precipitation and surface air temperature extremes in mainland portugal. Journal of Atmospheric Research, 127, 195-209.
7. Hejazizadeh, Z., Fatahi, T., Salighe, M., & Arsalani, F. (2013). Investigating the effect of climate signals on iran central region rainfall using artificial neural network. Journal of Applied Geosciences Research, 13 (29), 75-89. (In Persian).
8. Hirsch, R., & James, R. (1984). Anonparametric trend test for seasonal data with serial dependence. Journal of Water Resource, 20(6), 727-732.
9. Jahanshahi, A., Shahedi, K., Solaimani, K., & Moghaddamnia, A. (2019). Determination of hydrological homogenous regions in the west of hamounjazmourian river basin. Iran Water Resource Research Jounral, 15(1), 223-235. (In Persian).
10. Kendall, MG. (1975). Rank correlation methods and ed. Newyork hafner. Mann, H.B., 1945, Nonparametric tests against trend. Jounral of Econometrica Research, 3, 245-259.
11. Gan, T. Y. (1998). Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water resources research, 34(11), 3009-3015.
12. Khorshiddost, M., & Zanganeh, S. (2013). Analysis and evaluation of the trend of extreme temperature and precipitation indicators based on daily synoptic station series of kermanshah in the 48-year statistical period (1961-2009). The thirty-second gathering and the first international congress of geosciences, Tehran, Iran, 1-7.
13. Kosegran, S., & Mousavibaghi, M. (2015). Investigating the trend of extreme weather events in the northeast. Journal of Water and Soil Science and Technology of Agriculture, 29(3), 750-764. (In Persian).
14. Kouhestani, SH., Eslamian, S., Abedi-Koupai, J., & Besalatpour, A. (2016). Projection of climate change impacts on precipitation using soft-computing techniques a case study in zayandehrud basin iran. Jounral of Global and Planetary Change, Volume 144, 158-170.
15. Li, Q., Li, Z., Zhu, Y., Deng, Y., Zhang, K., & Yao, Ch. (2018). Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale. Jounral of Proceeding of the International Association of Hydrological Sciences, 379, 13-19.
16. Massah Bavani, A., Goodarzi, E., & Zohrabi, N. (2013). Detection of temperature and precipitation trends and their attribution it to the greenhouse gases (case study: west azerbaijan province). Journal of Earth and Space Physics, 39(3), 111-128. (In Persian).
17. Mohammadi, H., Azizi, Gh., Khoshaykalah, F., & Rancid, F. (2017). The trend analysis of daily rainfall indexes in iran. Natural Geographic Research, 49(1), 21-37. (In Persian).
18. Mohammadyariyan, M., Tavosi T., Khosravi, M., & Hamidiyanpour, M. (2019). Zoning of iranian heavy precipitation regime. Geographical Researches Quarterly Journal, 34(2), 183-192. (In Persian).
19. Paul, A., Riddhidipa, V., Chowdary, Dibyendu, Dutta, U., Sreedhar, H., & Ravi, S. (2017). Trend analysis of time series rainfall data using robust statistics. Journal of Water and Climate Change, 8(4), 691-700.
20. Peraltahernandez, A., Balling, R., & Barbamartinez, L. (2009). Comparative analysis of indices of extreme rainfall events. Variations and Trends from Southern Mexico Atmosfera, 22(2), 219-228.
21. Rajabi, A., & Shabanlou, S. (2012). The analysis of uncertainty of climate change by means of SDSM model case study- kermanshah. World Applied Sciences Journal, 23(10), 1392-1398. (In Persian).
22. Rustum, R., Adebayo, J., & Mwale, F. (2017). Spatial and temporal trend analysis of long term rainfall records in data-poor catchments with missing data a case study of lower shire floodplain in malawi for the period. Hydrology and Earth System Sciences Discussions, 1-30.
23. Sarr, M.A., Gachon, P., Seidou, O., Bryant, Ch., Ndione, J., & Comby, J. (2014). Inconsistent linear trends in senegalese rainfall indices from 1950-2007. Hydrological Sciences Journal, 60, 1538-1549.
24. Tipping, M., & Bishop, C. (1999). Probabilistic principal component analysis. Journal of Royal Statistical soc, 61(3), 611-622.
25. Yilmaz, A. (2015). The effects of climate change on historical and future extreme rainfall in antalya turkey. Hydrological SciencesJjournal, 60, 2148-2162.
26. Yue, S., Pilon, P., & Phinney, B. (2003). Canadian streamflow trend detection impacts of serial and crosscorrelation. Hydrogical Sciences Journal, 48(1), 51-64.
27. Zhang, X. (2007). ETCCDI/CRD climate change indices software. Climate Research Division of Environment Canada, cccma.seos.uvic.ca/ETCCDMI/software.
Gachon