حل معکوس معادله انتقال آلاینده به‌منظور شناسایی منابع آلاینده در رودخانه‌ها تحت شرایط واقعی با استفاده از روش ژئواستاتیستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

2 استادیار، گروه سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

3 استاد، گروه سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

حل مسئله معکوس انتقال آلاینده به دلیل ویژگی‌های خاصی همچون عدم وجود پاسخ، عدم یکتایی پاسخ و عدم پایداری بسیار مشکل و چالش‌برانگیز است. با توجه به پیچیدگی‌های مسئله مذکور، معمولاً فرضیات و ساده‌سازی‌هایی در روند حل صورت می‌گیرد که در نهایت منجر به ارائه روش‌هایی می‌گردد که قابلیت بسط و توسعه برای کاربرد در شرایط واقعی را ندارند. در این تحقیق، روشی کاربردی برای تشخیص منابع آلاینده در رودخانه‌ها تحت شرایط واقعی، با لحاظ نامنظمی مقاطع و غیرماندگاری جریان و با در نظر گرفتن تاثیر توأمان فرآیندهای فیزیکی و شیمیایی انتقال، توسعه داده شده است. چارچوب احتمالاتی روش ارائه شده، امکان تخمین مشخصات منبع در لحظه‌های زمانی بیشتر از تعداد داده‌های مشاهداتی و همچنین در نظر گرفتن عدم قطعیت موجود در نتایج مدل ناشی از خطا در داده‌های مشاهداتی را فراهم می‌آورد. با توجه به این‌که در حل معکوس معادله انتقال، حل مستقیم آن نیز موردنیاز است، در ابتدا حل معادلات جریان و جابه‌جایی-پراکندگی با استفاده از روش‌ عددی تفاضل محدود صورت گرفته و سپس معادله معکوس انتقال به منظور شناسایی منابع آلاینده موجود، با استفاده از روش ژئواستاتیستیک حل می‌شود. نتایج اجرای مدل برای سه مثال فرضی و دو سری داده واقعی، حاکی از دقت مطلوب و پایداری عددی بالای مدل دربازیابی مشخصات منابع آلاینده حتی شرایط پیچیده و نزدیک به واقعیت و با استفاده داده‌های مشاهداتی ناقص و دارای خطا بود. میزان عدم قطعیت در بازیابی مشخصات منابع آلاینده هم از طریق محاسبه بازه اطمینان 95 درصد در نظر گرفته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Inverse solution of transport equation for pollution source identification in rivers under realistic conditions using the geostatistical method

نویسندگان [English]

  • Maryam Barati Moghaddam 1
  • Mehdi Mazaheri 2
  • Jamal Mohammad Vali Samani 3
1 PhD Candidate of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
2 Assistant Prof., Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
3 Professor, Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

The inverse transport problem is very difficult and challenging to solve due to some special characteristics, including the lack of solution, non-uniqueness and instability. Regarding to these complexities, usually some simplifications are made in solution process, which ultimately leads to identification methods that cannot be extended for real-world applications. This study aims to develop a practical method for pollution source identification in rivers under realistic conditions, which considers irregular cross-sections, unsteady flow and both physical and chemical transport processes. The stochastic framework of proposed method provides the possibility of estimation of source characteristics in greater time instances than available observation data as well as consideration of uncertainty due to error in those data. Considering that direct solution is also required in the solution of inverse transport problem, at first flow and transport equations is solved by finite difference numerical scheme. Then, inverse transport equation is solved to identify active pollution sources using the geostatistical method. Results of application of the method to three hypothetical examples and two sets of real data indicated the great accuracy and numerical stability of proposed method in reconstruction of source characteristics even in complicated real-world condition and using sparse and erroneous observation data. Furthermore, the identification uncertainty was considered through 95 percent confidence interval.

کلیدواژه‌ها [English]

  • Advection-dispersion equation
  • Inverse problem
  • Reconstruction of pollution source characteristics
  • Unsteady flow
1. Avanzino, R. J., Zellweger, G. W., Kennedy, V. C., Zand, S. M., & Bencala, K. E. (1984). Results of a solute transport experiment at Uvas Creek, September 1972 (2331-1258). Retrieved from U. S. geological survey, website: https://www.usgs.gov
2. Barati Moghaddam, M., Mazaheri, M., & Samani, J. M. V (2017). A comprehensive one-dimensional numerical model for solute transport in rivers. Hydrology & Earth System Sciences, 21(1), 99-116.
3. Butera, I., & Tanda, M. G. (2003). A geostatistical approach to recover the release history of groundwater pollutants. Water Resources Research, 39(12), 1372-1380.
4. Butera, I., Tanda, M., & Zanini, A. (2006). Use of numerical modelling to identify the transfer function and application to the geostatistical procedure in the solution of inverse problems in groundwater. Journal of Inverse and Ill-Posed Problems Jiip, 14(6), 547-572.
5. Butera, I., Tanda, M. G., & Zanini, A. (2013). Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27(5), 1269-1280.
6. Chapra, S. C. (2008). Surface water-quality modeling. Illinois: Waveland press.
7. Cheng, W. P., & Jia, Y. (2010). Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in Water Resources, 33(4), 397-410.
8. De Marsily, G. (1986). Quantitative hydrogeology; groundwater hydrology for engineers. San Diego, California: Academic Press.
9. El Badia, A., Ha-Duong, T., & Hamdi, A. (2005). Identification of a point source in a linear advection–dispersion–reaction equation: application to a pollution source problem. Inverse Problems, 21(3), 1121.
10. Fakouri Dekahi, B. (2016). Effect of floods and management of pollution sources on temporal and spatial variations in water salinity of Karun River (Mollasani to Farsiat). Water and Irrigation Management, 6(2), 295-314.  (In Persian).
11. Ghane, A., Mazaheri, M., & Samani, J. M. V. (2016). Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Journal of Environmental Management,180, 164-171.
12. Gzyl, G., Zanini, A., Frączek, R., & Kura, K. (2014). Contaminant source and release history identification in groundwater: a multi-step approach. Journal of Contaminant Hydrology, 157, 59-72.
13. Huang, R., Han, L.-x., Jin, W.-l., Peng, H., Pan, M.-m., & Zhang, H. (2015). The Reverse Based Identification of Source Intensity Changes in Sudden Pollution Accidents in Medium River. Nature Environment and Pollution Technology, 14(3), 673.
14. Jamshidi, S., & Niksokhan, M. H. (2015). Waste load allocation in Sefidrud using water quality trading. Water and Irrigation Management, 5(2), 243-259. (In Persian).
15. Kitanidis, P. K. (1995). Quasi‐linear geostatistical theory for inversing. Water Resources Research, 31(10), 2411-2419.
16. Kitanidis, P. K. (1996). On the geostatistical approach to the inverse problem. Advances in Water Resources,19 (6), 333-342.
17. Mehri, Y., Mehri, M., & Soltani, J. (2020). Evaluation of combined Models with Optimization Approach of PSO and GA in ANFIS for Predicting of Dispersion Coefficient in Rivers. Water and Irrigation Management,10 (1), 45-59. (In Persian).
18. Michalak, A. M., & Kitanidis, P. K. (2002). Application of Bayesian inference methods to inverse modelling for contaminants source identification at Gloucester Landfill, Canada. Developments in Water Science, 47, 1259-1266.
19. Michalak, A. M., & Kitanidis, P. K. (2003). A method for enforcing parameter nonnegativity in Bayesian inverse  problems with an application to contaminant source identification. Water Resources Research, 39(2), 1033-1046.
20. Michalak, A. M., & Kitanidis, P. K. (2004a). Application of geostatistical inverse modeling to contaminant source identification at Dover AFB, Delaware. Journal of hydraulic Research, 42(S1), 9-18.
21. Michalak, A. M., & Kitanidis, P. K. (2004b). Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling. Water resources research, 40(8), W08302.
22. Skaggs, T. H., & Kabala, Z. (1994). Recovering the release history of a groundwater contaminant. Water Resources Research, 30(1), 71-79.
23. Snodgrass, M. F., & Kitanidis, P. K. (1997). A geostatistical approach to contaminant source identification. Water Resources Research, 33(4), 537-546.
24. Sun, A. Y. (2007). A robust geostatistical approach to contaminant source identification. Water Resources Research, 43(2), W02418.
25. Sun, A. Y., Painter, S. L., & Wittmeyer, G. W. (2006). A constrained robust least squares approach for contaminant release history identification. Water Resources Research,42 (4), W04414.
26. Sun, N.-Z. (2013). Inverse problems in groundwater modeling (Vol. 6). Netherlands: Springer Science & Business Media.
27. Wu, W. (2007). Computational river dynamics. London: CRC Press.
28. Zhang, S.-p., & Xin, X.-k. (2016). Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm. Applied Water Science, 1-9.