بررسی امکان تولید آب از هوای مرطوب در مدل گلخانه ای مجهز به مبدل حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گرایش آبیاری و زهکشی، گروه مهندسی آبیاری و زهکشی، دانشکده ابوریحان، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه مهندسی آبیاری و زهکشی، دانشکده ابوریحان، دانشگاه تهران، تهران، ایران

3 استادیار، گروه باغبانی، دانشکده ابوریحان، دانشگاه تهران، تهران، ایران

4 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

چکیده

در حدود 90 درصد آبی که در گلخانه‌ها مصرف می‌شود، به دو فرآیند تبخیر و تعرق و خنک‌سازی محیط تخصیص می‌یابد. حجم زیادی از آب استفاده شده در گلخانه‌ها بدون استفاده و به صورت هوای مرطوب توسط هواکش به بیرون هدایت می‌شود که قابل بازیافت بوده و امکان مصرف دوباره آن با تقطیر به چرخه ورودی آب گلخانه وجود دارد. از اینرو، هدف از انجام این تحقیق، در گام نخست بررسی امکان تولید آب از هوای مرطوب خارج شده از گلخانه و در گام بعدی بررسی تأثیر پارامترهای طول مبدل حرارتی و سرعت هوای ورودی روی میزان آب بازیافت شده است. این مطالعه در قالب 9 تیمار آزمایشی با سه طول متغیر (5/0، 1 و 5/1 متر) و سه سرعت هوای ورودی (5/0، 8/0 و 2/1 متر بر ثانیه)، در یک مدل گلخانه‌ای با ابعاد 5/1×1×2 مترمکعب انجام گردید. نتایج نشان داد که افزایش طول و سرعت هوای ورودی باعث افزایش تولید آب می‌شود به طوری که بیشترین مقدار آب چگالش شده در طول 5/1 متر و سرعت هوای 2/1 متر بر ثانیه به دست آمد. همچنین، مقدار آب تولیدی حدود 3 برابر شد به طوری که مقدار آب تولیدی در بیشترین میزان خود به 60 لیتر در طول 5/1 متر و سرعت 2/1 متر بر ثانیه رسید. همچنین، نتایج نشان داد که می‌توان با استفاده از مبدل حرارتی، حدود 10 تا 30 درصد آب مصرفی برای آبیاری و سرمایش (هواکش و پوشال) را بازیافت کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Possibility of Water Production from humid Air in the Greenhouse Model Equipped with Heat Exchanger

نویسندگان [English]

  • Payam Kamali 1
  • Seied Mehdy Hashemy Shahdany 2
  • Saman Javadi 2
  • Sasan Aliniaeifard 3
  • Hamed Ebrahimian 4
1 Ph.D. Candidate of Irrigation and Drainage, Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
2 Associate professor, Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
3 Assistant professor, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
4 Associate professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
چکیده [English]

About 90 percent of the water used in greenhouses is allocated to the two processes of evapotranspiration and cooling of the environment. A large amount of water used in greenhouses is driven out useless in the form of humid air by the fan, which is recyclable and can be reused in the greenhouse water inlet cycle by condensation. Therefore, the purpose of this study is to investigate the possibility of water production from humid air exiting the greenhouse. In the next step, the effects of heat exchanger length and inlet air velocity were investigated on the amount of recycled water. This study was conducted in 9 experimental treatments with three lengths (0.5, 1 and 1.5 m) and three inlet air velocities (0.5, 0.8 and 1.2 m/s) inside a greenhouse model with dimensions of 2x1.5 x 2 m3. The measurements were done with dimensions of 1.5 × 1 × 2 m3. The results showed that increasing the heat exchanger length and inlet air velocity increase the water production and the highest condensed water achieved at heat exchanger length of 1.5 m and an air velocity of 1.2 m/s. Also, the amount of water produced was about three times higher than normal condition without condensation, up to a maximum of 60 liters at a length of 1.5 m and velocity of 1.2 m/s. The results showed that about 10 to 30 percent of the water used for irrigation and cooling (fan and pad) the greenhouse can be recovered by using a heat exchanger.

کلیدواژه‌ها [English]

  • Air velocity
  • Condensation
  • Greenhouse
  • Humidity
1. افاضاتی، م.، ایران دوست، م. و رضایی استخروییه، ع. (1394). تأثیر پلیمر سوپرجاذب بر رشد و عملکرد گیاه خیار گلخانه­ای تحت شرایط کم­آبیاری. مدیریت آب و آبیاری. 5 (2): 214-203.
2. بهرامی، س.، طباطبایی، ط. و کریمی، م. ر. (۱۳۹۴). امکان سنجی آبگیری آب از رطوبت هوا با استفاده از روش سامانه تولید آب مکنده رطوبت هوا در استان هرمزگان- بندرعباس، اولین همایش علمی پژوهشی زیست شناسی و علوم باغبانی ایران، تهران، انجمن علمی توسعه و ترویج علوم و فنون بنیادین، ایران.
3. حسین‌خانی، ع. (1395). ساخت و شبیه­سازی آب‌شیرین‌کن خورشیدی رطوبت­زنی- رطوبت­زدایی، پایان نامه کارشناسی ارشد، انرژی­های تجدیدپذیر دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته.
4. زارع ابیانه، ح.، چشمه قصابانی، ا.، باب الحوائجی، ح. و افروزی، ع. (1397). اثر کم‌آبیاری بر تبخیر و تعرق، کارایی مصرف آب، عملکرد و رشد گیاه فلفل همدانی در کشت گلخانه­ای. علوم و فنون کشت­های گلخانه­ای. 9 (2): 36-23.
5. علیزاده، ا. رابطه آب و خاک و گیاه. جلد دوازدهم. انتشارات آستان قدس رضوی. مشهد. 616 صفحه.
6. کمیسیون کشاورزی، آب و صنایع غذایی. (1395). وضعیت آب در بخش کشاورزی. اتاق بازرگانی صنایع، معادن و کشاورزی تهران. 20 صفحه.
7. محبوبی، م. ر.، اسماعیلی اول، م. و یعقوبی، ج. (1390). بررسی عوامل بازدارنده و پیش‌برنده کاربرد روش­های جدید آبیاری توسط کشاورزان: مورد غرب شهرستان بشرویه در خراسان جنوبی. مدیریت آب و آبیاری. 1(1): 98-87.
8. محمدی، ع. (1391). تولید آب با استفاده از تقطیر هوا در لوله­های مدفون در زیرزمین، پایان­نامه کارشناسی ارشد، دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیرالدین طوسی.
9. Al-Ismaili, A.M. (2009) Modelling of a humidification-dehumidification greenhouse in Oman, PhD thesis, Cranfield University (United Kingdom), Ann Arbor, UK.
10. Al-Ismaili, A.M,. & Jayasuriya, H. (2016). Seawater greenhouse in Oman: A sustainable technique for freshwater conservation and production. Renewable and Sustainable Energy Reviews, 54, 653-664.
11. Bryant, J.A., & Ahmed, T. (2008). Condensate Water Collection for an Institutional Building in Doha, Qatar: An Opportunity for Water Sustainability. Energy Systems Laboratory. Proceedings of the 16th Symposyum on Improving Building Performance Systems in Hot and Humid Climates, Plano, TX, 15-17 December.
12. Hirich, A., & Choukr-Allah, R. (2017).  Water and Energy Use Efficiency of Greenhouse and Net house Under Desert Conditions of UAE: Agronomic and Economic Analysis. Water Resources in Arid Areas. Part of the Springer Water book series (SPWA), 481-499.
13. Kabeel, A.E., & Ali, M.A. (2013). Seawater greenhouse in desalination and economics. Seventeenth International Water Technology Conference, IWTC17, Istanbul, 5-7 November.
14. Kabeel, A.E. & Emad, M.S. El-Said. (2015). Water production for irrigation and drinking needs in remote arid communities using closed-system greenhouse: A review. Engineering Science and Technology, an International Journal, 18(2), 294-301.
15. Lindblom, J., & Nordell, B. (2007). Underground condensation of humid air for drinking water production and subsurface irrigation. Desalination, 203(1-3), 417-434.
16. Paton, Ch. (2012). Seawater Greenhouse: A Restorative approach to agriculture, Discussion Paper 1220, Global Water Forum. 
17. Sablani, S.S., Goosenat, M.F.A., Patonb, C., Shayya, W.H., & Al-Hinaid, H. (2003).  Simulation of fresh water production using a humidification-dehumidification seawater greenhouse. Desalination, 159 (3), 283-288.
18. Salehi, G.R., Ahmadpour, M., & Khoshnazar, H. (2011). Modeling of the Seawater Greenhouse Systems. Solar Thermal Application. World Renewable Energy Congress, Linkoping, Sweden, 8-13 May.
19. Tahri, T., Douania, M., Amouraa, M., & Bettahar, A. (2016). Study of influence of operational parameters on the mass condensate flux in the condenser of seawater greenhouse at Muscat, Oman. Desalination and Water Treatment, 57(30), 1-8.
20. Zarei, T., Behyad, R., & Abedini, E. (2017). Study on parameters effective on the performance of a humidification-dehumidification seawater greenhouse using support vector regression. Desalination, 435(1), 235-245. 
21. Zulovich, J.M. (2009). Maintenance of Evaporative Cooling Systems. Extension Agricultural Engineer Commercial Agriculture Program of University of Missouri Cooperating with U.S. Publication 1453.