تعیین تابع تولید و پاسخ عملکرد کل ماده‌ی خشک و دانه به کم‌آبیاری در گیاه ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناس ارشد علوم و مهندسی خاک، دانشگاه لرستان، خرم آباد، ایران.

2 علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

3 استادیار گروه مهندسی آب دانشکده کشاورزی دانشگاه لرستان، خرم آباد، ایران.

چکیده

خشکی و تنش ناشی از آن از عوامل مهمی است که تولید محصولات کشاورزی را در سراسر جهان تحت تأثیر قرار می‌دهد. بنابراین مطالعه حاضر با هدف تعیین تابع تولید آب – اجزای عملکرد و واکنش کل ماده‌ی خشک، دانه و شاخص برداشت به سطوح مختلف آب در گیاه ذرت در سال زراعی 94-1393 در مزرعه‌ی تحقیقاتی دانشگاه آزاد اسلامی شهرستان دزفول در استان خوزستان صورت پذیرفت. پژوهش در قالب طرح بلوک‌های کامل تصادفی با چهار تیمار 60، 80، 100 و 120 درصد آبیاری کامل ذرت (W60، W80، W100، W120) و در چهار تکرار اجرا گردید. نتایج نشان داد که مناسب‌ترین تابع تولید آب با عملکرد کل ماده خشک، دانه و ساقه به‌صورت تابع خطی به‌ترتیب با ضریب تبیین 897/0، 682/0 و 927/0 و در سطح یک درصد معنی‌دار به‌دست آمد. همچنین تیمار W100 نسبت به تیمار W60 به‌طور معنی‌داری (70 درصد) سبب افزایش عملکرد کل ماده‌ی خشک گردید در صورتی‌که تیمار W80 نسبت به تیمار W100 تنها با کاهش پنج درصدی در عملکرد کل ماده‌ی خشک مواجه شد. بیشترین مقدار شاخص برداشت (43/0) و بیشترین کارآیی مصرف آب بر اساس عملکرد کل ماده‌ی خشک و دانه (به ترتیب kgm-3 8/4 و 06/2) از تیمار W80 به‌دست آمد. با توجه به یافته‌های پژوهش، بهترین عملکرد دانه، کل ماده خشک و کارآیی مصرف آب از تیمار 80 درصد آبیاری کامل حاصل گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of crop water production function and response of total dry matter and grain yield to deficit irrigation in Maize

نویسندگان [English]

  • Elham Jorooni 1
  • Afsaneh Alinejadian Bidabadi 2
  • Abbas Maleki 3
1 Soil Science Department, Faculty of Agriculture, Lorestan University, Khoramabad, Iran.
2 Soil Science Department, Faculty of Agriculture, Lorestan University, Khoramabad, Iran.
3 Water Engineering Department, Faculty of Agriculture, Lorestan University, Khoramabad, Iran.
چکیده [English]

Drought and its stress are the most important factors for crop production. This research was carried out for determination of crop water production function and investigation different levels of irrigation water on yield component total dry matter, grain and harvest index in different irrigation levels for corn in Khoozestan in a research farm in Islamic Azad University, Dezfool branch in 1014-2015. It was conducted in randomized complete block design with four treatments including 60%, 80%, 100% and 120% of full irrigation (W60, W80, W100 and W120, respectively) and four replications. According to the total dry matter, grain and shot, the best crop water production function was obtained as linear function with R2 equal 0.897, 0.682 and 0.927, respectively which was significant in level of 1%. In comparison to W60 treatment, full irrigation treatment (W100) increased total dry matter yield (70%) but in comparison to W100, W80 treatment decreased total dry matter yield (5%). On the basis of total dry matter yield and grain (4.8 and 2.06 kg/ m3), maximum harvest index (0.43) and maximum water use efficiency were obtained for W80 treatment. The results show that the best grain yield and water use efficiency were related to W80.

کلیدواژه‌ها [English]

  • Different levels of irrigation water
  • Drought
  • harvest index
  • Yield component
  • Water use efficiency
  1. ابراهیمی پاک ن ع (1393) تعیین ضریب واکنش عملکرد سیب زمینی نسبت به کم آبیاری در مراحل مختلف رشد در شهرکرد. مهندسی آبیاری و آب. 15: 50-39.
  2. اکبری نودهی د (1393) تأثیر روش‌های آبیاری جویچه‌ای و کم آبیاری بر عملکرد و کارآیی مصرف آب ذرت علوفه‌ای در مازندران. علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک. 18(70): 255-245.
  3. توللی ح و ا سمنانی (1381) روش‌های تجزیه خاک‌ها، گیاهان، آب‌ها و کودها. چاپ اول، انتشارات دانشگاه شهید چمران اهواز. 219 صفحه.
  4. حیدری سورشجانی س.، شایان نژاد م.، نادری م. و حقیقتی ب (1394) تأثیر سطوح مختلف آبیاری بر خصوصیات کمی و کیفی ذرت علوفه‌ای (رقم NS) و تعیین عمق بهینه آبیاری آن در شرایط کمبود آب. علوم آب و خاک. 19(73): 137-125.
  5. سالمی ح ر.، توکلی ع ر. و حیدری ن (1393) اثرات کم آبیاری بر عملکرد و اجزای عملکرد ذرت دانه‌ای (Zea mayz L.) و تعیین بهره‌وری آب در شبکه آبیاری نکوآباد اصفهان. بوم شناسی کشاورزی. 6(4): 869-858.
  6. عالی‌نژادیان بیدآبادی ا (1391) تعیین توابع آب-عملکرد ذرت علوفه‌ای در آبیاری با پساب شهری و تأثیر آن بر برخی خصوصیات خاک. دانشگاه شهرکرد. شهرکرد. پایان‌نامه دکتری.
  7. لک ش.، نادری ا.، سیادت ع.، آینه بند ا. و نورمحمدی ق (1386) اثرات تنش کمبود آب بر عملکرد دانه و کارآیی نیتروژن ذرت دانه‌ای هیبرید سینگل کراس704 در مقادیر متفاوت نیتروژن و تراکم بوته. علوم کشاورزی و منابع طبیعی. 14(2): 76-37.
  8. مجیدیان م. و غدیری ح (1381) تاثیر تنش رطوبت و مقادیر مختلف کود نیتروژن در مراحل مختلف رشد بر عملکرد، اجزای عملکرد، کارآیی استفاده از آب و برخی ویژگی‌های فیزیولوژیک گیاه ذرت. علوم کشاورزی ایران. 33(3):533-521.
  9. مجدم م. و مدحج ع (1391) اثر سطوح نیتروژن بر کارآیی مصرف آب، عملکردو اجزای عملکرد دانه ذرت دانه‌ای در شرایط بهینه و تنش خشکی. پژوهشهای زراعی ایران. 10(3):554-546.
  10. نخجوانی مقدم م م. و قهرمان ب (1384) مقایسه توابع تولید گندم زمستانه از آب در منطقه مشهد. علوم و فنون کشاورزی و منابع طبیعی. 9(3):41-27.
  11. Azizi G (2003) The relationship between recent drought and groundwater resources in the Qazvin Plain. Geographical Research Quarterly. 35(46): 131-144.
  12. Bola˜nos J and Edmeades G O (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. 1: responses in grain yield, biomass, and radiation utilization. FieldCrops Research. 31(3-4): 233–252.
  13. Dagdelen N, Yilmaz E, Sezgin F and Gurbuz T (2006) Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea maye L.) in western Turkey. Agricultural Water Management. 82(1-2):63-85.
  14. De Juan Valero, J A, Maturano M, Artigao A, Ramírez Tarjuelo Martín-Benito J M and Ortega Álvarez J F (2005) Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Spanish Agricultural Research. 3(1): 134-144.
  15. Di Paolo E and Rinaldi M (2008) Yields response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. FieldCrops Research. 105(3): 202–210.
  16. Doorenbos J, Kassam A H, Bentvelsen C L M; Branscheid V and Plusje J M G A (1979) Yield response to water. FAO Irrigation and drainage paper No. 33, FAO, Rome, Italy. 200 p.
  17. Farre I and Faci J M (2009) Deficit irrigation in maize for reducing agricultural water use in in a Mediterranean environment. Agricultural Water Management. 96(3):383-394.
  18. Flexas J, Bota J, Loreto F, Cornic G and Sharkey T D (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology. 6: 269–279.
  19. Hao B, Xue Q, Marek T H, Jessup K E, Hou X, Xu W, Bynum E D and Bean B W (2015) Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agricultural Water Management. 155: 11–21.
  20. Hugh J E and Davids R F (2003) Effect of drought stress on leaf and while canopy radiation use efficiency and yield of maize. Agronomy. 95(3): 688-696.
  21. Irmak S, (2015) Interannual variation in long-term center pivot maize evapotranspiration and various water productivity response indices. II: irrigation water use efficiency, crop WUE, evapotranspiration WUE, irrigation-evapotranspiration use efficiency and precipitation use efficiency. Irrigation and Drainage Engineering. 141(5):04014069-1-11.
  22. Istanbulluoglu A, Kocaman I and Konukcu F (2002) Water use-production relationship of maize under Tekirdag conditions in Turkey. Pakistan Biological Sciences. 5(3):287-291.
  23. Katerji N, Horn J W, Hamdy A and Mastrorilli M (2004) Comparison of corn yield response to plant water stress caused by salinity and by drought. Agricultural Water Management. 65(2):95-101.Kipkorir E C. Raes D and Masaje B (2002) Seasonal water production functions and yield response factors for maize and onion in Perkerra. Kenya. Agricultural Water Management. 56(3):229-240.
  24. Kiziloglu F M, Sahin U, Tunc T and Diler S (2006) The effect of deficit irrigation on potato evapotranspiration and tuber yield under cool season and semiarid climatic condition. Agronomy. 5:284–288.
  25. Kresovic´ B, Tapanarova A, Tomic´ Z, Zivotic´ L, D. Vujovic´ D, Sredojevic´ Z and Gajic´ B (2016) Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agricultural Water Management. 169: 34-43.
  26. Lovelli S, Perniola M, Ferrara A and Di Tommaso T (2007) Yield response factor to water (Ky) and water use efficiency of carthamus tinctorius L. and solanum melongena L. Agricultural Water Management. 92(1-2):73-80.
  27. Mansouri-Far C, Modarres Sanavy S A M and Saberali S F (2010) Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural Water Management. 97(1):12-22.
  28. Oktem A, Simsek M and Oktem A G (2003) Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region water-yield relationship. Agricultural Water Management. 61(1): 63-74.
  29. Pandey R K, Mranville J W and Admou A (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management. 46(1):1-13.
  30. Paredes P, Rodrigues G C, Alves I and Pereira L S (2014) Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agricultural Water Management. 135: 27-39
  31. Payero J O, Melvin S R Irmak S and Tarkalson D (2006) Yield response of corn to deficit irrigation in a semi-arid climate. Agricultural Water Management. 84(1-2):101–112.
  32. Pejic´ B, Maheshwar B L, Sˇeremeˇsic´ S, Striˇcevic´ R, Pacureanujoita M, Rajic´ M and Cupina B (2011) Water-yield relations of maize (Zea mays L.) in temperate climatic conditions. Maydica. 56(4): 315–323.
  33. Szeles A V, Megyes A and Nagy J (2012) Irrigation and nitrogen effects on the leaf chlorophyll content and grain yield of maize in different crop years. Agricultural Water Management 107:133–144.
  34. Stewart J I, Hagan R M, Pruitt W O, Danielson R F, Franklin W T, Hanks R J, Riley J P and Jackson E B (1977) Optimizing crop production through control of water and salinity levels in the soil. Utah Water Research Laboratory, College of Engineering, Utah State University. 191 p.Tanji KK (1990) Agricultural salinity assessment and management. American. Society of Civil Engineering. New York, USA, 619 p.
  35. Tolk JA and Howell TA (2003). Water use efficiencies of grain sorghum in three USA southern Great Plains soils. Agricultural Water Management. 59 (2): 97–111.
  36. Westgate M E (1994) Water status and development of the maize endosperm and embryo during drought. Crop. Science. 34(1): 76-83.
  37. Yazar A, Sezen S M and Gencel B (2002) Drip irrigation of corn in the Southeast Anatolia Project (GAP) area in turkey. Irrigation Drainage Engineering. 51(4):293-300.
  38. Zwart SJ and Bastiaanssen WGM (2004) Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management. 69(2):115-133.