اثر سیلاب‌ها و مدیریت منابع آلاینده بر تغییرات زمانی و مکانی شوری رودخانة کارون (ملاثانی تا فارسیات)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تربیت مدرس

چکیده

رودخانه‌ها علاوه بر اهمیت محیط‌زیستی، نقش مهمی در زندگی مردم مجاور خود دارد. رودخانة کارون، پر‌آب‌ترین و طولانی‌ترین رودخانة ایران، در سال‌های اخیر با کاهش جریان و افزایش بار‌گذاری منابع آلاینده، با افزایش شوری همراه بوده است. در تحقیق حاضر، تغییرات زمانی و مکانی شوری آب 105 کیلومتر از رودخانة کارون در محدودة ملاثانی تا فارسیات با استفاده از مدل MIKE11 شبیه‌سازی شد. بعد از واسنجی و صحت‌سنجی مدل هیدرودینامیکی و جابه‌جایی- پراکندگی، نتایج شبیه‌سازی عددی نشان داد که بر اثر بارگذاری منابع آلاینده، پروفیل طولی شوری، به‌ویژه در محدودة کیلومتر 60 و 90، به‌ترتیب با قرار‌گیری شهر اهواز و مزارع کشاورزی، به‌صورت پله‌ای افزایش یافته است. حداکثر و حداقل تغییرات شوری به‌ترتیب در مرداد و اسفند اتفاق می‌افتد. برای توصیف نرخ تغییرات شوری در فصول تر و خشک معادلة مرتبة چهاری به‌ترتیب با ضریب تبیین 99/0 و 98/0 پیشنهاد شد. نتایج نشان داد که افزایش دبی سیلاب منجر به کاهش قابل‌ملاحظه‌ای در شوری رودخانه می‌شود. در مرداد، حذف منابع کشاورزی و در اسفند، حذف منابع صنعتی و شهری به‌ترتیب در بالادست و پایین‌دست شهر اهواز بیشترین تأثیر را در کاهش شوری رودخانه دارد. نتایج به‌دست‌آمده از این تحقیق برای بررسی اثر تغییرات جریان و بارگذاری منابع آلاینده بر شوری رودخانة کارون و ارائة راهکار مدیریتی مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of floods and management of pollution sources on temporal and spatial variations in water salinity of Karun River (Mollasani to Farsiat)

نویسنده [English]

  • Bahman Fakouri Dekahi
چکیده [English]

Rivers in addition to their environmental importance play a critical role in their neighboring people's lives. Karun River recognized as the most watery and longest river of Iran, in recent years, to declining flows and increasing the loading pollution sources to the river, its salinity has been increased. In this study, temporal and spatial changes in water salinity in the range of 105 km of Karun River from Mollasani to Farsiat were simulated using MIKE11 models. After calibration and validation of hydrodynamic and advection-dispersion model, numerical simulation results showed that in the effect of the loading of pollutants sources, salinity longitudinal profileespecially at the reaches of 60 and 90 km respectively positioned Ahvaz city and farmlands has increased as stepped. Maximum and minimum salinity changes take respectively place at the months of Aug. and Mar. To describe the rate of salinity variation in wetting and drying seasons, a fourth-order equation respectively with coefficient of determination of 0.99 and 0.98 was proposed. Results revealed that increasing flood discharge would lead to a significant decrease in the salinity of the river. In the month of Aug., removal of agricultural sources and in Mar., the removal of industrial and urban sources, have greatly influenced river salinity reduction at the upstream and downstream of Ahvaz, respectively. Results of this study can be used to study the effect of flow variation and pollution sources loading on the Karun River salinity and appropriate management solution provision.

کلیدواژه‌ها [English]

  • advection-dispersion
  • hydrodynamic
  • loading pollution sources
  • MIKE11 model
  • Numerical simulation
  • salinity management
  1. دهانزاده ب. و ظهیری ع (1394) برآورد ظرفیت انتقال رسوب رودخانه ها با استفاده از مدل ریاضی شبه دوبعدی. پژوهش‌های حفاظت آب و خاک. 22(2): 158- 143.
  2. حسنیان س. حسونی‌زاده ه. و حسینی‌زارع ن (1391) بررسی میزان شوری رودخانه کارون ناشی از ورود پساب‌های کشاورزی و صنعتی در استان خوزستان در چند سال اخیر. مجموعه مقالات نهمین سمینار بین المللی مهندسی رودخانه، دانشگاه شهید چمران، ایران.
  3. ناصری ملکی م. و کاشفی‌پور س م (١٣٩٢) شبیه سازی هیدرودینامیک جریان و پارامترهای کیفی در سیستم رودخانه کرخه با استفاده از مدل  FASTER. پژوهش آب ایران. ٧ (13): 121- 129.
  4. محمدی س. و کاشفی‌پور س م (1391) مدلسازی عددی جریان به کمک ضریب زبری دینامیک (مطالعه موردی: رودخانه کارون). مهندسی آب و آبیاری.3(9): 110- 99.
  5. Afkhami M (2003) Environmental Effects of Salinity in the Karun Dez basin, IRAN. Proceeding 7th International Water Technology Conference, Egypt.
  6. Afkhami M, Shariat M, Jaafarzadeh N, Ghadiri H and Nabizadeh R (2007) Developing a water quality management model for Karun and Dez rivers. Environmental Health Science and Engineering. 4(2): 99-106.
  7. Delphi M (2012) Application of characteristics method for flood routing (Case study: Karun River). Geology and Mining Research. 4(1): 8-12.
  8. Deng Z Q, Singh V P and Bengstsson L (2001) longitudinal dispersion coefficient in straight rivers. Hydraulic Engineering. 127(11): 919-927.
  9. DHI Water and Environment (2007) MIKE11, a modeling system for rivers and channels. Reference Manual, 516p.
  10. FAO (Food and Agricultural Organization of the United Nations) (1976) Water quality for agriculture, FAO, Rome. 510 p.
  11. Farber E, Vengosh A, Gavrieli I, Marie A, Bullen T, Mayer B, Holtzman R, Segal M and Shavit U (2005) Management scenarios for the Jordan River salinity crisis. Applied Geochemistry. 20: 2138–2153.
  12. Fischer H B, List E J, Koh R C Y, Imberger J and Brooks N H (1979) Mixing in Inland and Coastal Waters. Academic Press, New York, 483 p.
  13. Ghadiri H (2016) Salinization of Karun River in Iran by Shallow Groundwater and Seawater Encroachment. Advances in Hydro-Science and -Engineering. (4): 1-9.
  14. Hughes M G, Harris P T, Hubble T C T (1998) Dynamics of the turbidity maximum zone in a micro-tidal estuary: Hawkesbury River, Australia. Sedimentology. 45: 397–410.
  15. Kanda E, Kosgei J and Kipkorir E (2015). Simulation of organic carbon loading using MIKE 11 model: a case of River Nzoia, Kenya. Water Practice and Technology.10 (2): 298- 304.
  16. Karamouz M, Mahjouri N and Kerachian R (2004) River Water Quality Zoning: A Case Study of Karoon and Dez River System. Environmental Health Science and Engineering. 1(2): 16-27.
  17. Kashefipour S M and Falconer R A (2002) longitudinal dispersion coefficient in natural channels. Water Research. 36: 1596-1608.
  18. Kashefipour S M and Zahiri j (2010) Comparison of Empirical Equations Application in the Advection-Dispersion Equation (ADE) on Sediment Transport Modeling. World Applied Sciences. 11(8): 1015-1024.
  19. Kerachian, R. & Karamouz, M. 2005. Wast-load Allocation Model for Seasional River Water Quality Management: Application of Sequential Dynamics Genetic Algorithm. Journal of Scintica Iranica, 12(2), 117–130.
  20. KWPA (2000) an assessment of pollutants in Karun River: A report prepared by the Water Quality Assessment section. 1th Ed. Khuzestan Water and Power Authority, Iran, 346 p.
  21. Lemckert C J, Cambell  P G and Jenkins G A (2011) Turbulence in the bottom boundary layer of Moreton Bay, Queensland, Australia. Coast Research. 64: 1091–1094.
  22. Naddafi K, Honari H and Ahmadi M (2007) Water quality trend analysis for the Karoon River in Iran. Environmental Monitoring and Assessment. 134: 305–312.
  23. Peck A J and Hatton T (2003) Salinity and the discharge of salts from catchments in Australia. Hydrology. 272 (1–4): 191–202.
  24. Prairie J R, Rajagopalan B, Fulp T J and Zagona E A (2005) Statistical nonparametric model for natural salt estimation. Environmental Engineering. 131(1): 130–138.
  25. Quinn NWT (2011) Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia. Agricultural Water Management. 98: 930 940.
  26. Laxmi R, Arya S, Sultana A and Sanjay D (2015) Assessment and impact of industrial effluents on river Yamuna ecosystem. Current Research. 7 (9): 19956-19963.
  27. Seo I W and Cheong T S (1998) Predicting longitudinal dispersion coefficient in natural streams. Hydraulic Engineering. 124: 25-32.
  28. Shetye S R and Murty C S (1987) Seasonal variation of the salinity in the Zuari estuary, Goa, India. Earth and Planetary Sciences. 96 (3): 249–257.
  29. Tri.D. Q., Don. N. C., Ching. C. Y. and Mishra P. K. 2014. Modeling the influence of river flow and Salinity intrusion in the Mekong River Estuary, Vietnam. International Association of Lowland Technology (IALT). 16(1), 14-25.
  30. WHO (World Health Organization) (2004) Guidelines for drinking water quality: surveillance and control of community supplies. 3th Ed. World Health Organization, Geneva, 515 p.
  31. Yu Y, Zhang H and Lemckert C, (2014). Salinity and turbidity distributions in the Brisbane River estuary, Australia. Hydrology. 519: 3338–3352.