مدل یک‌بعدی انتقال آلاینده در رودخانه‌های طبیعی با تأکید بر نقش نواحی نگهداشت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد گروه سازه‌های آبی، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران

2 استادیار گروه سازه‌های آبی، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران

3 استاد گروه سازه‌های آبی، دانشکدۀ کشاورزی، دانشگاه تربیت مدرس، تهران

چکیده

رودخانه‌ها از منابع اصلی تأمین آب شرب و کشاورزی هستند؛ بنابراین، کنترل و مدل‌سازی دقیق کیفیت آب رودخانه‌ها به‌منظور حفظ سلامت انسان‌ها و پایداری محیط‌زیست ضروری است. یکی از مواردی که انتقال مادۀ آلاینده، به‌ویژه در نهرهای کوهستانی کوچک را به شدت تحت تأثیر قرار می‌دهد، نواحی نگهداشت موقت هستند. تأثیرات اصلی این نواحی شامل حبس موقتی مادۀ آلاینده، کاهش غلظت این مواد در پایین‌دست و تأثیر غیرمستقیم بر فرایند جذب در بستر نهر است. هدف این تحقیق، ارائۀ مدلی جدید و جامع با تلفیق الگوهای عددی با درجۀ دقت بسیار (روش QUICK)(Choi, 2000 #34) برای شبیه‌سازی انتقال آلاینده با لحاظ نگهداشت موقت و جذب سینتیک در رودخانه‌ها با مقطع نامنظم تحت رژیم جریان غیرماندگار است. نتایج اجرای مدل برای مثالی فرضی و دو سری دادۀ واقعی و مقایسۀ آن‌ها با نتایح دو مدل رایج دیگر، حاکی از دقت مطلوب و پایداری عددی فراوان آن بود. بنابراین، می‌توان مدل را در بسیاری از مطالعات انتقال آلاینده به‌عنوان جایگزین مناسبی برای مدل‌های رایج فعلی پیشنهاد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

One-dimensional pollutant transport model in natural rivers, with emphasis on the role of storage zones

نویسندگان [English]

  • Maryam Barati Moghaddam 1
  • Mehdi Mazaheri 2
  • Jamal Mohammadvali Samani 3
1 Msc. Graduate of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Iran
2 Assistant Professor, Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Iran
3 Professor, Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Iran
چکیده [English]

Rivers are one of the major resources of drinking and agriculture water, so accurate control and modeling of their water quality is essential for protection of human health and environment stability. Transient storage zones have a great effect on contaminant transport, especially in small mountain streams. The main effects include temporary detainment of solute and decrease its concentration in downstream and indirect effect on sorption process of solutes at streambed. In this study a new and comprehensive model that merges numerical schemes with higher order accuracy (QUICK scheme), for modeling pollutant transport with transient storage zones and kinetic sorption in rivers with irregular cross sections at unsteady flow regime, is presented. The model results for a hypothetical example and two sets of real data and comparison of them with results of two common models, show that model have reasonable accuracy and high numerical stability. So presented model could be suggested as an appropriate alternative model for common present models, at many of contaminant transport studies in natural rivers and streams.

کلیدواژه‌ها [English]

  • kinetic sorption
  • QUICK scheme
  • transient storage
  • Unsteady flow
  • water quality modeling
1. Beltaos S and Day T (1978) A field study of longitudinal dispersion. Canadian Civil Engineering. 5: 572-585.
2. Bencala K E (1983) Simulation of solute transport in a mountain pool and riffle stream with a kinetic mass transfer model for sorption. Water Resources Research, 19: 732-738.
3. Bencala K E (1984) Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Water Resources Research, 20: 1804-1814.
4. Bencala K E, Mcknight D M and Zellweger G W (1990) Characterization of transport in an acidic and metal rich mountain stream based on a lithium tracer injection and simulations of transient storage. Water Resources Research. 26: 989-1000.
5. Bencala K E and Walters R A (1983) Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream:A Transient Storage Model. Water Resources Research. 19: 718-724.
6. Chapra S C and Runkel R L (1999) Modeling impact of storage zones on stream dissolved oxygen. Environmental Engineering. 125: 415-419.
7. Chapra S C and Wilcock R J (2000) Transient storage and gas transfer in lowland stream. environmental engineering. 126: 708-712.
8. Czernuszenko W, Rowinski P-M and Sukhodolov A (1998) Experimental and numerical validation of the dead-zone model for longitudinal dispersion in rivers. Hydraulic Research. 36: 269-280.
9. D'Angelo D, Webster J, Gregory S and Meyer J (1993) Transient storage in Appalachian and Cascade mountain streams as related to hydraulic characteristics. North American Benthological Society. 12(3): 223-235.
10. Day T J (1975) Longitudinal dispersion in natural channels. Water Resources Research 11: 909-918.
11. Ensign S H and Doyle M W (2005) In-channel transient storage and associated nutrient retention: Evidence from experimental manipulations. Limnology and Oceanography.50 (6): 1740-1751.
12. Fernald A G, Wigington P and Landers D H (2001) Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research, 37(6):1681-1694.
13. Gooseff M N, Bencala K E and Wondzell S M (2008) Solute transport along stream and river networks.In: Stephen P Rice, Andr´e G Roy and Bruce L Rhoads (Eds), River Confluences, Tributaries and the Fluvial Network. JohnWiley & Sons, Ltd. pp.395-418.
14. Jackman A, Walters R and Kennedy V (1984) Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA: 2. Mathematical modeling. hydrology. 75: 111-141.
15. Jin L, Siegel D I, Lautz L K and Otz M H (2009) Transient storage and downstream solute transport in nested stream reaches affected by beaver dams. Hydrological processes. 23: 2438-2449.
16. Kazezyılmaz-alhan C M and Medina Jr M A (2006) Stream solute transport incorporating hyporheic zone processes. Hydrology, 329: 26-38.
17. Kelleher C, Wagener T, Mcglynn B, Ward A, Gooseff M and Payn R, (2013) Identifiability of transient storage model parameters along a mountain stream. Water Resources Research. 49: 5290-5306.
18. Laenen A and Bencala K E (2001) Transient storage assessments of dyetracer injections in rivers of the willamette basin, Oregon. JAWRA, 37(2):367-377.
19. Leonard B P (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering. 19: 59-98.
20. Lin Y-C and Medina JR, M A (2003). Incorporating transient storage in conjunctive stream–aquifer modeling. Advances in Water Resources. 26: 1001-1019.
21. Morrice J A. Valett H, Dahm, C N and Campana, M E (1997) Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams. Hydrological Processes. 11:253-267.
22. Neumann L, Šimunek J and Cook F (2011) Implementation of quadratic upstream interpolation schemes for solute transport into HYDRUS-1D. Environmental Modelling & Software. 26: 1298-1308.
23. Nordin C F and Troutman B M (1980) Longitudinal dispersion in rivers: The persistence of skewness in observed data. Water Resources Research. 16: 123-128.
24. Runkel R L (1996) Solution of the advection-dispersion equation: continuous load of finite duration. Environmental Engineering.122: 830-832.
25. Runkel R L (1998) One-dimensional Transport with Inflow and Storage (OTIS): a solute transport model for streams and rivers. Water-Resources Investigations Report 98-4018:77p.
26. RunkelL R L and Bencala K E (1995) Transport of reacting solutes in rivers and streams. In:Vijay Singh (Eds), Environmental hydrology. Springer.pp 137-164.
27. Runkel R L and Chapra S C (1993) An efficient numerical solution of the transient storage equations for solute transport in small streams. Water Resources Research, 29: 211-215.
28- Van Mazijk A and Veling E (2005) Tracer experiments in the Rhine Basin: evaluation of the skewness of observed concentration distributions. Hydrology. 30: 60-78.
29. Versteeg H K and Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. 2th Ed. Pearson Education, 517p.