مدل‌سازی جذب آب به‌وسیلۀ گیاه ریحان در شرایط تنش‌های هم‌زمان آب، شوری و کمبود نیتروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، دانشکدۀ کشاورزی و منابع طبیعی، گروه مهندسی آب، تهران، ایران

2 استادیار دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، دانشکدۀ کشاورزی و منابع طبیعی، گروه مهندسی آب، تهران، ایران

چکیده

منطقۀ غیراشباع خاک یکی از بخش‌های مهم چرخۀ هیدرولوژی است که نقش درخور ‌توجهی در مدیریت منابع آب کشاورزی دارد. هدف از این پژوهش، تعیین میزان جذب آب به‌وسیلۀ گیاه تحت شرایط تنش‌های هم‌زمان آب، شوری و نیتروژن شرایط غالب در مناطق خشک و نیمه‌خشک است. بدین منظور، آزمایشی با چهار سطح کمّی آب آبیاری شامل 120، 100، 80 و 60 درصد نیاز آبی گیاه، چهار سطح کیفی آب آبیاری شامل 2/1، 3، 5 و 8 دسی‌زیمنس بر متر و چهار سطح کود نیتروژن شامل 100، 75، 50 و 0 درصد نیاز کودی انجام شد. نتایج نشان داد که بر اساس آماره‌های محاسبه‌شده، واکنش گیاه ریحان به تنش‌های هم‌زمان سه‌گانۀ آب، شوری و نیتروژن با استفاده از مدل MB-MB-EXP، مناسب‌ترین شبیه‌سازی را به همراه دارد (22/7 nRMSE=و 05/19 ME=). تحلیل حساسیت مدل‌ها نشان داد که مدل MB-MB-VG با کم‌ترین پارامتر ورودی و حساسیت نسبتاً کم به این پارامترها (5/1 >Sc) بیش از دیگر مدل‌های بررسی‌شده دقت دارد (45/7 nRMSE=و 75/19 ME=).

کلیدواژه‌ها


عنوان مقاله [English]

Modeling basil root water uptake under simultaneous water, salinity, and nitrogen deficit stresses conditions

نویسندگان [English]

  • Hossein Babazadeh 1
  • Mahdi Sarai Tabrizi 2
1 Associate Professor, Department of Water Engineering, College of Agriculture and Natural Resources, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Water Engineering, College of Agriculture and Natural Resources, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Soil unsaturated zone is one of the important parts of hydrological cycle that has an especial role in agricultural water resources management. The objective of this research was to determine the amount of root water uptake under simultaneous water, salinity, and nitrogen stresses as prevailing conditions in arid and semi-arid regions. To do so, the experiment was conducted with four quantitative levels of irrigation water including 120, 100, 80, and 60 percent of crop water requirement, four qualitative levels of irrigation water including 1.2, 3, 5, and 8 dSm-1 and four nitrogen fertilizer levels including 100, 75, 50, and zero percent of fertility requirement. The results indicated that based on calculated statistics, the basil response was suitable simulated by MB-MB-EXP model under simultaneous triple water, salinity, and nitrogen stresses (nRMSE=7.22 and ME=19.05). The sensitivity analysis of the models indicated that MB-MB-VG model with the lowest input parameters and relatively low sensitivity to these parameters (Sc<1.5) has a better accuracy than other studied models (nRMSE=7.45 and ME=19.75).

کلیدواژه‌ها [English]

  • agricultural water management
  • Basil
  • MB-MB-EXP model
  • MB-MB-VG model
  • Sensitivity analysis
. امیدبیگی، ر. 1390. تولید و فرآوری گیاهان دارویی. جلد سوم، چاپ ششم، انتشارات آستان قدس رضوی، مشهد، شماره نشر 149، 397 صفحه.
2. جلالی و ر. و هماییم (1389) مدل‌سازی اثر زمان اعمال تنش محیط ریشه بر عملکرد گیاه کلزا. به‌زراعی کشاورزی، 12 (1): 29-40.
3. حسینی ی. هماییم. کریمیان ن ع. و سعادت س (1387) مدل‌سازی واکنش کلزا به تنش‌های توأمان شوری و کمبود نیتروژن. علوم و فنون کشاورزی. جلد 12 شماره 46. ص 721-735.
4. سرائی تبریزیم (1393) مدل‌سازی جذب آب بوسیله گیاه در شرایط تنش‌های توأمان آب، شوری و نیتروژن. رساله دکتری جهت دریافت درجه دکتری تخصصی مهندسی آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، 140 صفحه.
5. سرائی تبریزیم. بابازاده ح. هماییم. کاوه ف. و پارسی‌نژاد م (1393) شبیه‌سازی پاسخ گیاه ریحان به شوری آب آبیاری. پژوهش آب در کشاورزی، 28 (4): 691-701.
6. سعادت س. هماییم. و لیاقت ع (1384) اثر شوری محلول خاک بر جوانه‌زنی و رشد گیاهچه سورگوم علوفه‌ای. علوم خاک و آب، 19 (2): 243-254.
7. علیزاده ح. لیاقت ع م و نوری محمدیه م (1388) ارزیابی توابع کاهش جذب آب توسط گوجه فرنگی در شرایط تنش همزمان شوری و خشکی. آب و خاک (علوم و صنایع کشاورزی)، 23 (3): 88-97.
8. سفید کن ف (1387) برنامه راهبردی تحقیق پژوهشات گیاهان دارویی. مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان ترویج، آموزش و تحقیقات کشاورزی، وزارت جهاد کشاورزی، 40 صفحه.
9. کیانی ع. هماییم. و میرلطیفی م (1385) ارزیابی توابع کاهش عملکرد گندم در شرایط توأم شوری و کم آبی. علوم خاک و آب، 20 (1): 73-83.
10. Azizian A and Sepaskhah A R (2014) Maize response to water, salinity and nitrogen levels:yield-water relation, water-use efficiency and water uptake reduction function. International Plant Production. 8 (2): 183-214.
11. Bonan G B (1996) A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.
12. Dirksen C and Augustijn D C (1988) Root water uptake function for nonuniform pressure and osmotic potentials. Agricultural Abstracts, pp. 188.
13. Ekren S, Sonmez C, Ozcakal E, Kukul Kurttas Y S, Bayram E, Gurgulu H (2012) The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agricultural Water Management. 57 (2): 111-126.
14. Francois L E (1996) Salinity effects on four sunflower hybrids. Agronomy. 88: 215-219.
15. Homaee M, Dirksen C and Feddes R A (2002a) Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management. 57: 89-109.
16. Homaee M, Dirksen C and Feddes R A (2002b) Simulation of root water uptake. II. Nonuniform transient water stress using different reduction functions. Agricultural Water Management. 57: 111-126.
17. Homaee M, Feddes R A and Dirksen C (2002c) Simulation of root water uptake. III. non-uniform transient combined salinity and water stress. Agricultural Water Management. 57: 127-144.
18. Hosaini Y, Homaee M, Karimian N A and Saadat S (2009) Modeling vegetative stage response of Canola (Brassica napus L.) to combined salinity and boron stresses. International Plant Production. 4 (3):175-186.
19. Kustas W P, Humes K S and Norman J M (1996) Single- and dual-source modeling of surface energy fluxes with radiometric surface temperature. Applied Meteorology. 35(1): 110–121.
20. Liu H F, Genard M, Guichard S and Bertin N (2007) Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes, Experimental Botany. 58 (13): 3567-3580.
21. Loague K and Green R E (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. Contaminant Hydrology. 7: 51-73.
22. Maas E V and Hoffman G J (1977) Crop salt tolerance-current assessment. Irrigation and Drainage Division, ASCE. 103: 115-134.
23. Richards L A (1931) Capillary conduction of liquids in porous mediums. Physics. 1: 318-333.
24. Robinson, D. A., Gardner, C. M. K. and J. D. Cooper. 1999. Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. Hydrology, 223: 198–211.
25. Saadat S and Homaee M (2015) Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management. 152:119-124.
26. Sepaskhah A R and Beirouti Z (2009) Effect of irrigation interval and water salinity on growth of madder (Rubia tinctorum L.). International Plant Production. 3(3):1-16.
27. Shenker M, Ben-Gal A and Shani U (2003) Sweet corn response to combined nitrogen and salinity environmental stresses. Plant Soil. 256: 139-147.
28. van Genuchten M Th and Hoffman G J (1984) Analysis of crop production. In: I. Shainberg and J. Shalhevet (eds), Soil salinity under irrigation. pp. 258-271. Springer-Verlag.