نویسندگان
1 دانش آموخته کارشناسی ارشد مهندسی منابع آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان - ایران
2 دانشیار دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد، مشهد – ایران
3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان - ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
In recent years, use of fuzzy collection theories for modeling of hydrological phenomenon's that is including complexity and uncertainly is considered scholars. So in this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for performance of river flow forecasting process. In this research, three parameters such as raining, temperature and daily discharge of Lighvanchai basin used for daily river flow forecasting in Lighvan River. Then, for determination optimum Lags of input parameters, is studied correlogram of data. Finally, for study of temperatures effect in forecasting, this processing performed by separate of months. Assessment of prediction results by using various values as Nash-Sutcliff coefficient that showed task that ANFIS model had high exact (CNS = 0.979) and low error (RMSE = 0.041) in prediction and the ANFIS model can be employed successfully in river flow forecasting. Also by assessment of final results determined that temperature in October was affected on prediction and causes exact increase of it.
کلیدواژهها [English]