برآورد اثرات زیست‌محیطی مزارع قزل‌آلای ایران با ضرایب پیامدهای چرخه عمر در شرایط عدم قطعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران دانشگاه اصفهان، دانشگاه اصفهان، اصفهان، ایران.

10.22059/jwim.2024.375299.1157

چکیده

فعالیت آبزی‌پروری و تخلیه آلاینده‌ها در بالادست رودخانه‌ها پیامدهای زیست‌محیطی گوناگونی مانند سمیت زیست‌بوم و تغذیه‌گرایی را به‌همراه دارد که نیازمند روشی جامع برای ارزیابی پیامدهای زیست‌محیطی است. لذا پژوهش حاضر روشی توسعه‌یافته برای تحلیل پیامدهای زیست‌محیطی براساس آنالیز کیفیت آب ورودی و خروجی مزارع پرورش ماهی و مبتنی بر ضرایب مدل ReCiPe در قالب مفهوم ارزیابی اثرات چرخه عمر (LCIA) ارائه نمود. در این چهارچوب، تأثیر زیست‌محیطی پرورش ماهی در دسته‌های مصرف آب، براساس رویکرد جدید ردپای آب خاکستری، به‌همراه تغذیه‌گرایی و سمیت برای پنج مجموعه پرورش ماهی قزل‌آلا در مناطق مختلف ایران محاسبه شد. نتایج مطالعه نشان داد که کل جامدات معلق (TSS) پارامتر کیفی غالب بود. هم‌چنین مصرف آب بیش‌ترین تأثیر را بر نتایج ارزیابی اثرات زیست‌محیطی داشت. آبزی‌پروری به‌طور میانگین منجر به افزایش 95 درصد خسارت معادل زیست‌محیطی از آب ورودی تا پساب خروجی مزارع شد که تأثیر آن بر سلامت انسان بیش‌تر از زیست‌بوم بود. عواملی مانند بار آلودگی، انتخاب رویکرد مدل‌سازی در ReCiPe و وزن‌دهی مؤلفه‌ها در عدم قطعیت نتایج اثرگذار بود. نتایج تحلیل حساسیت نشان داد تغییر در انتخاب رویکرد ReCiPe از سلسله مراتبی به برابری‌طلب باعث کاهش 35 درصد مجموع خسارت‌های شده است، درحالی‌که افزایش بار آلودگی ناشی از افزایش دبی یا غلظت آلاینده غالب در ردپای آب خاکستری می‌تواند به‌صورت خطی خسارت‌های معادل را افزایش دهد. بنابراین پیشنهاد شد ضمن مدیریت و استفاده بهینه از خوراک در مزارع، از سیستم‌های پیش‌تصفیه فاضلاب برای کنترل انتشار آلودگی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Environmental impacts assessment of Iranian trout farms using the life cycle impact coefficients under uncertainties

نویسندگان [English]

  • parham tafazzoli
  • Shervin Jamshidi
Department of Civil Engineering, University of Isfahan, Isfahan, Iran.
چکیده [English]

Aquaculture activity and discharge of pollutants in the upstream of the rivers bring various environmental impacts such as ecosystem toxicity and eutrophication. Thus, it requires an integrated method for evaluating the cumulative environmental impacts. This research presented a developed method for analyzing the environmental impacts based on the analysis of the inlet and outlet water quality of fish farms and used the coefficients of the ReCiPe as a life cycle impact assessment (LCIA). In this framework, water consumption was also included based on grey water footprint, along with eutrophication and toxicity for 5 trout farming in various regions of Iran. The results showed that total suspended solids was the leading water quality parameter, water consumption had the highest impact in LCIA, human health was relatively more vulnerable than the ecosystem, and total damages increased 95 percent on average from inlet to outlet. Nevertheless, factors like the inflow, ReCiPe background, and the weighting coefficients were effective on results uncertainties. The sensitivity analysis showed that changing ReCiPe background from hierarchic to egalitarian had the greatest impact on the results of LCIA with 35 percent damage reduction, while the increase in the pollution load caused by the increase in flow or concentration of the dominant pollutant in the grey water footprint can linearly increase the equivalent damages. Therefore, it was suggested to use wastewater pretreatment systems to control the spread of pollution beside managing and optimally using feed in farms.

کلیدواژه‌ها [English]

  • Aquaculture
  • Eutrophication
  • Life Cycle Assessment
  • Trout
  • Water Quality Management
  1. Biermann, G., & Geist, J. (2019). Life cycle assessment of common carp (Cyprinus carpio) – A comparison of the environmental impacts of conventional and organic carp aquaculture in Germany. Aquaculture, 501(2017), 404–415. https://doi.org/10.1016/j.aquaculture.2018.10.019
  2. Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M. A., Horsley, J., Pauli, N., McNeill, K., Neef, A., Van Ogtrop, F., Curnow, J., Haworth, B., Duce, S., & Imanari, Y. (2015). Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environmental Science and Policy, 54, 389-397. https://doi.org/10.1016/j.envsci.2015.08.002
  3. Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3), 247-264. https://doi.org/10.1016/S1161-0301(03)00024-8
  4. Esty, D., Srebotnjak, T., H.Kim, C., A.Levy, M., de Sherbinin, A., & Anderson, B. (2006). Pilot 2006 Environmental Performance Index (EPI). NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H44M92GX
  5. Dekamin, M., Veisi, H., Safari, E., Liaghati, H., Khoshbakht, K., & Dekamin, M. G. (2015). Life cycle assessment for rainbow trout (Oncorhynchus mykiss) production systems: A case study for Iran. Journal of Cleaner Production, 91(2021), 43–55. https://doi.org/10.1016/j.jclepro.2014.12.006
  6. Dekker, E., Zijp, M. C., van de Kamp, M. E., Temme, E. H. M., & van Zelm, R. (2020). A taste of the new ReCiPe for life cycle assessment: consequences of the updated impact assessment method on food product LCAs. International Journal of Life Cycle Assessment, 25(12), 2315-2324. https://doi.org/10.1007/s11367-019-01653-3
  7. Elhami, B., Farahani, S. S., & Marzban, A. (2019). Improvement of energy efficiency and environmental impacts of rainbow trout in Iran. Artificial Intelligence in Agriculture, 2, 13-27.https://doi.org/10.1016/j.aiia.2019.06.002
  8. García, B. G., Jiménez, C. R., Aguado-Giménez, F., & García, J. G. (2019). Life cycle assessment of seabass (Dicentrarchus labrax) produced in offshore fish farms: Variability and multiple regression analysis. Sustainability (Switzerland), 11(13), 1-21. https://doi.org/https://doi.org/10.3390/su11133523
  9. García García, B., Rosique Jiménez, C., Aguado-Giménez, F., & García García, J. (2016). Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms. Sustainability, 8(12), 1228. https://doi.org/https://doi.org/10.3390/su8121228
  10. Grönroos, J., Seppälä, J., Silvenius, F., & Mäkinen, T. (2006). Life cycle assessment of Finnish cultivated rainbow trout. Boreal Environment Research, 11(5), 401-414.
  11. Guner, Y., Kizak, V., Saygi, H., Turan, G., Tekogul, H., Karacalar, U., Gulec, F., & Hekimoglu, M. (2016). Production Optimisation of a Land-Based Trout Farm and the Reduction of its Environmental Effects. Ekoloji, 25(98), 41-51. https://doi.org/10.5053/ekoloji.2015.29
  12. Hermann, B. G., Kroeze, C., & Jawjit, W. (2007). Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of Cleaner Production, 15(18), 1787-1796. https://doi.org/10.1016/j.jclepro.2006.04.004
  13. Hidayah, N., Abu Bakar, F., Mahyudin, N. A., Faridah, S., Nur-Azura, M. S., & Zaman, M. Z. (2013). Detection of malachite green and leuco-malachite green in fishery industry. International Food Research Journal, 20(4), 1511-1519.
  14. Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564-573. https://doi.org/10.1016/j.ecolind.2016.02.026
  15. Hoekstra, A. Y., Chapagain, A. K., And, M. M. A., & Mekonnen, M. M. (2011). The Water Footprint Assessment Manual Setting the Global Standard.
  16. Huijbregts, M., Steinmann, Z. J. N., Elshout, P. M. F. M., Stam, G., Verones, F., Vieira, M. D. M., Zijp, M., & van Zelm, R. (2016). ReCiPe 2016 - A harmonized life cycle impact assessment method at midpoint and endpoint level. Report I: Characterization. National Institute for Public Health and the Environment, 194.
  17. ISO 14040. (1997). Environmental assessment - Life cycle assessment - Principles and framework. Internation Standard Organisation, 1-20.
  18. Jafari, M., Soltani, J., Mehdy, S., Shahdany, H., & Javad, M. (2023). Application of life cycle assessment method in environmental comparison of agricultural water distribution system modernization options (case study) (In Persian). Civil and Project Journal, 7, 61-79.
  19. Jamshidi, S. (2019). An approach to develop grey water footprint accounting. Ecological Indicators, 106(105477). https://doi.org/10.1016/j.ecolind.2019.105477
  20. Jamshidi, S., Imani, S., & Delavar, M. (2022). An approach to quantifying the grey water footprint of agricultural productions in basins with impaired environment. Journal of Hydrology, 606, 127458. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127458
  21. Jamshidi, S., & Naderi, A. (2023). A quantitative approach on environment-food nexus: integrated modeling and indices for cumulative impact assessment of farm management practices. PeerJ, 11(e14816). https://doi.org/10.7717/peerj.14816
  22. Jiang, Y., Chen, L., Hu, K., Yu, W., Yang, X., & Lu, L. (2015). Development of a fast ELISA for the specific detection of both leucomalachite green and malachite green. Journal of Ocean University of China, 14(2), 340–344. https://doi.org/10.1007/s11802-015-2407-5
  23. Jobling, M. (2012). National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquaculture International, 20(3), 601-602. https://doi.org/10.1007/s10499-011-9480-6
  24. Kaeidi, T., Jafaryan, H., Patimar, R., Harsij, M., & Farhangi, M. (2018). Study on changes in water quality parameters of rainbow trout Oncorhynchus mykiss (Walbaum, 1792) farm. Journal of Applied Ichthyological Research, 5(4), 129-138. (In Persian).
  25. Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., & Pinay, G. (2019). Eutrophication: A new wine in an old bottle? Science of the Total Environment, 651(1), 1-11. https://doi.org/10.1016/j.scitotenv.2018.09.139
  26. Li, X., Li, J., Wang, Y., Fu, L., Fu, Y., Li, B., & Jiao, B. (2011). Aquaculture Industry in China: Current State, Challenges, and Outlook. Reviews in Fisheries Science, 19(3), 187–200. https://doi.org/https://doi.org/10.1080/10641262.2011.573597
  27. MacLeod, M., Hasan, M., & Robb, D. (2018). Quantifying and mitigating greenhouse gas emissions from global aquaculture.
  28. Mahboobi Soofiani, N., Hatami, R., Hemami, M. R., & Ebrahimi, E. (2012). Effects of trout farm effluent on water quality and the macrobenthic invertebrate community of the Zayandeh-Roud River, Iran. North American Journal of Aquaculture, 74(2), 132–141. https://doi.org/10.1080/15222055.2012.672367
  29. Maillard, V. M., Boardman, G. D., Nyland, J. E., & Kuhn, D. D. (2005). Water quality and sludge characterization at raceway-system trout farms. Aquacultural Engineering, 33(4), 271–284. https://doi.org/10.1016/j.aquaeng.2005.02.006
  30. Maiolo, S., Forchino, A. A., Faccenda, F., & Pastres, R. (2021). From feed to fork – Life Cycle Assessment on an Italian rainbow trout (Oncorhynchus mykiss) supply chain. Journal of Cleaner Production, 289, 125155. https://doi.org/10.1016/j.jclepro.2020.125155
  31. Marzban, A., Elhami, B., & Bougari, E. (2021). Integration of life cycle assessment (LCA) and modeling methods in investigating the yield and environmental emissions final score (EEFS) of carp fish (Cyprinus carpio) farms. Environmental Science and Pollution Research, 28(15), 19234-19246. https://doi.org/10.1007/s11356-020-12116-w
  32. Masumkhani, F., Abolhasani, L., Khorramdel, S., & Mohadess, S. A. (2018). Environmental impact assessment of the main agricultural products on the environment in Balherat, Nishabour, using the life cycle assessment method. Journal of Agroecology, 11(3), 909-924. https://doi.org/10.22067/jag.v11i3.72459. (In Persian).
  33. Menoufi, K. A. I. (2011). An overview on Life Cycle Impact Assessment (LCIA) methodologies: A state of the art. Master of science University of Lleida, Spain.
  34. (2020). Getting Started with Minitab Statistical Software.
  35. Mirrasooli, E., Nezami, S., Ghorbani, R., & Khara, H. (2012). The impact of rainbow trout (oncorhynchus mykiss) farm effluents on water quality in zarringol stream (short technical report).(In Persian). New technologies in aquaculture development (Journal of Fisheries), 7(1), 107-112.
  36. Mohseni, P., Heidari, A., & Keshavarzi, A. (2021). Study of environmental effects of forage maize production using life cycle assessment. Journal of Water and Soil Conservation, 28(3), 71-91. https://doi.org/10.22069/jwsc.2022.19362.3485. (In Persian).
  37. Nyberg, O., Rico, A., Guinée, J. B., & Henriksson, P. J. G. (2021). Characterizing antibiotics in LCA—a review of current practices and proposed novel approaches for including resistance. The International Journal of Life Cycle Assessment, 26(9), 1816-1831. https://doi.org/10.1007/s11367-021-01908-y
  38. Pelletier, N., Tyedmers, P., Sonesson, U., Scholz, A., Ziegler, F., Flysjo, A., Kruse, S., Cancino, B., & Silverman, H. (2009). Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems. Environmental Science & Technology, 43(23), 8730-8736. https://doi.org/10.1021/es9010114
  39. Pérez Rincón, M. A., Hurtado, I. C., Restrepo, S., Bonilla, S. P., Calderón, H., & Ramírez, A. (2017). Water footprint messure method for tilapia, cachama and trout production: study cases to Valle del Cauca (Colombia). Ingeniería Y Competitividad, 19(2), 109–120. https://doi.org/10.25100/iyc.v19i2.5298
  40. Rath, N. C., Huff, G. R., Huff, W. E., & Balog, J. M. (2000). Factors Regulating Bone Maturity and Strength in Poultry1. Poultry Science, 79(7), 1024-1032. https://doi.org/https://doi.org/10.1093/ps/79.7.1024
  41. Rezaee, R., Maleki, A., Safari, M., Shahmoradi, B., Jafari, A., Giaghi, O., Zandi, S., Khaledyan, N., Sharifi, S., & Mohammadi, S. (2020). Determination of malachite green and leucomalachite green residues in rainbow trout in sanandaj city. Scientific Journal of Kurdistan University of Medical Sciences, 25(3), 61-71. (In Persian).
  42. Rosenbaum, R. K., Hauschild, M. Z., Boulay, A. M., Fantke, P., Laurent, A., Núñez, M., & Vieira, M. (2017). Life cycle impact assessment. Life Cycle Assessment: Theory and Practice, 167-270. https://doi.org/10.1007/978-3-319-56475-3_10
  43. Roudbari, M. V., Dehnavi, A., Jamshidi, S., & Yazdani, M. (2023). A multi-pollutant pilot study to evaluate the grey water footprint of irrigated paddy rice. Agricultural Water Management, 282(108291). https://doi.org/10.1016/j.agwat.2023.108291
  44. Sanchez-Matos, J., Regueiro, L., González-García, S., & Vázquez-Rowe, I. (2023). Environmental performance of rainbow trout (Oncorhynchus mykiss) production in Galicia-Spain: A Life Cycle Assessment approach. Science of The Total Environment, 856(159049). https://doi.org/10.1016/j.scitotenv.2022.159049
  45. Sindilariu, P. D., Reiter, R., & Wedekind, H. (2009). Impact of trout aquaculture on water quality and farm effluent treatment options. Aquatic Living Resources, 22(1), 93-103. https://doi.org/10.1051/alr/2009009
  46. Sindilariu, P. D., Schulz, C., & Reiter, R. (2007). Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture, 270(1-4), 92-104. https://doi.org/10.1016/j.aquaculture.2007.03.006
  47. Song, X., Liu, Y., Pettersen, J. B., Brandão, M., Ma, X., Røberg, S., & Frostell, B. (2019). Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. Journal of Industrial Ecology, 23(5), 1077-1086. https://doi.org/10.1111/jiec.12845
  48. Tahar, A., Kennedy, A. M., Fitzgerald, R. D., Clifford, E., & Rowan, N. (2018). Longitudinal evaluation of the impact of traditional rainbow trout farming on receiving water quality in Ireland. PeerJ, 2018(7), 1-22. https://doi.org/10.7717/peerj.5281
  49. Tamburini, E., Fano, E. A., Castaldelli, G., & Turolla, E. (2019). Life cycle assessment of oyster farming in the po delta, Northern Italy. Resources, 8(4), 1-17. https://doi.org/10.3390/resources8040170
  50. Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., & Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4(100022). https://doi.org/10.1016/j.nexus.2021.100022
  51. Varol, M., & Balcı, M. (2020). Characteristics of effluents from trout farms and their impact on water quality and benthic algal assemblages of the receiving stream. Environmental Pollution, 266(115101). https://doi.org/10.1016/j.envpol.2020.115101
  52. Wendling, Z. A., Emerson, J. W., Esty, D. C., Levy, M. A., & de Sherbinin, A. (2018). Environmental Performance Index 2018. Yale University, 123.
  53. Yazdanpanah, K., Hosseini, S., & Heydari, M. (2017). The effect of effluent from trout farms on the physico-chemical factors of Ganjegan river in Kohgiluyeh and Boyer-Ahmad province, Iran. New technologies in aquaculture development (Journal of Fisheries), 11(1), 9-18. (In Persian).
  54. Zusková, E., Máchová, J., Svobodova, Z., & Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Veterinarni Medicina, 52(12), 527-539. https://doi.org/10.17221/2027-VETMED