تلفیق روش‌های مختلف طبقه‌بندی اراضی با استفاده از الگوریتم فازی به کمک ادغام تصاویر ماهواره‌ای سنتینل-2 و لندست-8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، ایران.

2 گروه مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران.

10.22059/jwim.2024.369527.1125

چکیده

تکنیک‌های سنجش از دور و پردازش تصویر با فراهم‌نمودن اطلاعات مکانی و زمانی تحول بزرگی در اندازه‌گیری‌های سنتی  به‌وجود آورده‌اند و از ‌این پتانسیل برخوردارند تا دانش ما در حوزه فنی و مهندسی از جمله کامپیوتر، مهندسی منابع آب، سازه هیدرولیکی و نقشه‌برداری مانند برف، زمین‌شناسی و جغرافیا افزایش دهند. به‌منظور استفاده هم‌زمان از اطلاعات طیفی و مکانی تصاویر ماهواره‌ای از روش‌های مختلف تلفیق تصاویر استفاده می‌گردد. در تصویر ادغام‌یافته توانایی تفسیر افزایش می‌یابد و نتایج قابل‌قبول‌تری را به‌همراه دارد، چرا که داده‌هایی با ویژگی‌های متفاوت با یکدیگر ترکیب شده‌اند. در این پژوهش تصویر ادغام‌شده دو ماهواره لندست-8 و سنتینل-2 برای منطقه موردمطالعه بسطام شاهرود با پنج روش حداکثر احتمال، حداقل فاصله ماشین‌بردار پشتیبان، شبکه عصبی مصنوعی و جنگل تصادفی پردازش گردید و روش شبکه عصبی مصنوعی با ضریب کاپای 93/0 و روش حداقل فاصله با ضریب کاپای 34/0 به‌ترتیب بهترین و بدترین نتایج را به‌همراه داشتند. سپس چهار روش طبقه‌بندی حداکثر احتمال، ماشین‌بردار پشتیبان، شبکه عصبی مصنوعی وجنگل تصادفی با الگوریتم فازی جمع جبری تلفیق‌شده و ضریب کاپای 94/0 را نتیجه داد که نشان می‌دهد تلفیق بهترین نتایج طبقه‌بندی می‌تواند نتایج بهتر و دقیق‌تری در خصوص طبقه‌بندی به‌همراه‌داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Integration of different land classification methods using fuzzy algorithm with the help of integration of Sentinel-2 and Landsat 8 satellite images

نویسندگان [English]

  • Ardeshir Sassani 1
  • Seyed Fazlolah Saghravani 2
  • Behnaz Bigdeli 2
1 Water Resources Engineering and Management, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.
2 Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.
چکیده [English]

Remote sensing and image processing techniques have brought about a great transformation in traditional measurements by providing spatial and temporal information and have the potential to increase our knowledge in technical and engineering fields, including computers, water resources engineering, hydraulic structures, and mapping such as snow, geology, and geography. The ability to measure the amount of precipitation and flow is one of the basic applications of remote sensing and image processing. Different image integration methods are used to simultaneously use satellite image's spectral and spatial information. In the integrated image, the ability to interpret increases, and it brings more acceptable results because data with different characteristics are combined with each other. In this research, the integrated image of two satellites (Landsat 8) and (Sentinel 2) for the study area of Bastam Shahrood was processed with five methods of maximum likelihood, minimum distance, support vector machine (SVM), artificial neural network and random forest. The artificial neural network method with a Kappa coefficient of 0.93 and the minimum distance method with a Kappa coefficient of 0.34 had the best and worst results, respectively. Then, four classification methods of maximum likelihood, support vector machine(SVM), artificial neural network, and random forest were combined with a fuzzy algebraic summation algorithm, and the Kappa coefficient was 0.94, which shows that combining the best classification results can bring better and more accurate classification results.

کلیدواژه‌ها [English]

  • Image integration
  • Image processing
  • Fuzzy method
  • Kappa coefficient
  • Remote sensing satellite
  1. Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote sensing of environment, 123, 400-417.
  2. Banikhedmat, A., Bigdeli, B., & Seyed Fazlollah, S. F. (2024). Evaluation of the Impact of Image Fusion of Landsat 8 and Sentinel 2 Satellites on Flood Zone Estimation. Water and Irrigation Management, 14(2), 421-438.
  3. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
  4. Colecchia, F. (2013, February). A sampling algorithm to estimate the effect of fluctuations in particle physics data. In Journal of Physics: Conference Series (Vol. 410, No. 1, p. 012028). IOP Publishing.
  5. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., ... & Bargellini, P. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36.
  6. Edition, E. F. G. F. (1999). Erdas Inc. Atlanta, Georgia.
  7. Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., & Yang, Y. (2015). Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3), 47-60.
  8. Jalili-Moghaddam, M. (2005). Real-time Multifocus Image Fusion Using Discrete Wavelet Transform and Laplacian Pyramid Transform. Chalmers tekniska högskola. Chalmess University of Technology, Goteborg, Sweden.
  9. Kannan, K., & Perumal, S. A. (2007, December). Optimal decomposition level of discrete wavelet transform for pixel based fusion of multi-focused images. In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007) (Vol. 3, pp. 314-318). IEEE.
  10. Karimian, K., Amini, A., Bagheri, M.& Mohammadi., H. (2019). Monitoring land use changes using Landsat satellite images. (in Persian)
  11. Mather, P., & Tso, B. (2016). Classification methods for remotely sensed data. CRC press.
  12. Nielsen, M. A. (2015). Neural Networks and Deep Learning, Vol. 2018, Determination Press, San Francisco, California.
  13. Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27-S31.
  14. Palmer, M. A., Lettenmaier, D. P., Poff, N. L., Postel, S. L., Richter, B., & Warner, R. (2009). Climate change and river ecosystems: protection and adaptation options. Environmental management, 44, 1053-1068.
  15. Pandit, V. R., & Bhiwani, R. J. (2015). Image fusion in remote sensing applications: A review. International journal of computer applications, 120(10).
  16. Rangzan, K., Kabolizadeh, M., & Karimi, D. (2022). Optimized water depth retrieval using satellite imageries based on novel algorithms. Earth Science Informatics, 15(1), 37-55.
  17. Sigurdsson, J., Armannsson, S. E., Ulfarsson, M. O., & Sveinsson, J. R. (2022). Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method. Remote Sensing, 14(13), 3224.
  18. Vapnik, V. (2006). Estimation of dependences based on empirical data. Springer Science & Business Media.
  19. Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.
  20. Zhang, H., Zhang, Y., Gao, T., Lan, S., Tong, F., & Li, M. (2023). Landsat 8 and Sentinel-2 Fused Dataset for High Spatial-Temporal Resolution Monitoring of Farmland in China’s Diverse Latitudes. Remote Sensing, 15(11), 2951.
  21. Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote sensing of Environment, 159, 269-277.