مقایسه روش‌های درون‌یابی به‌منظور بهبود پیش‌بینی سطح ایستابی آب زیرزمینی با استفاده از روش‌های یادگیری عمیق

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

10.22059/jwim.2024.372424.1145

چکیده

منابع آب زیرزمینی عامل مهمی در مدیریت و نگهداری آب است که برای آب آشامیدنی، آبیاری و سایر اهداف استفاده می­شود. پیش‌بینی سطح آب زیرزمینی برای ارزیابی کل منابع آب و تخصیص آن‌ها، کمک به پایداری آب و کاهش خشکسالی بسیار مهم است. برخی اوقات وجود موانعی مانند نامساعدبودن شرایط جوی، مسدودبودن راه­ها و یا نبود تجهیزات و افراد کافی اندازه‌گیری تا ماه­ها انجام نمی­گیرد. از طرفی داده‌های دقیق و فراوان سطح آب زیرزمینی به پیش‌بینی پیامدهای مختلف مربوط به مدیریت آب زیرزمینی و سلامت اکوسیستم کمک می­کند. با این وجود تکمیل داده‌های مفقودشده و بهبود آن‌ها به‌روش درون‌یابی کمک مؤثری در پیش‌بینی سطح ایستابی به‌روش یادگیری عمیق می­کند. در این مطالعه آبخوان آذرشهر که به‌تازگی با افت سطح آب زیر­زمینی قابل‌توجهی روبه‌رو شده است به‌صورت ماهیانه از سال 1397 تا 1400 موردبررسی قرار گرفت. هم‌چنین جهت تکمیل داده‌هایی که به هر علتی اندازه‌گیری نشده بود از روش‌های درون‌یابی کریجینگ و الگوریتم M5P استفاده شد که با تجزیه و تحلیل هر روش، روش M5P با حداقل ریشه میانگین مربع خطا 83/1 متر و ضریب همبستگی 975/0 بهترین عملکرد را داشت. از طرفی برای پیش­بینی سطح آب زیرزمینی داده‌ها به دو صورت واسنجی و صحت‌سنجی70 به 30 تقسیم‌بندی شده و از روش یادگیری عمیق (DL) بهره گرفته شد که این روش با خطای 408/1 متر و دقت 88 درصد، قابل‌قبول بوده و می­توان در پژوهش‌های آتی جهت مدیریت  بهتر منابع آبی مورداستفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of interpolation methods to improve the prediction of groundwater surface level using deep learning

نویسندگان [English]

  • Erfan Abdi
  • ٍEsmaeil Asadi
  • Mohammad Ali Ghorbani
Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده [English]

Groundwater resources are an important factor in managing and maintaining water that is used for drinking water, irrigation and other purposes. Groundwater level forecasting is very important for assessing total water resources and their allocation, contributing to water sustainability and drought mitigation. Sometimes, due to the presence of obstacles such as unfavorable weather conditions, blocked roads, or lack of equipment and people, measurements are not carried out for months. On the other hand, accurate and abundant groundwater level data helps to predict various consequences related to groundwater management and ecosystem health. Nevertheless, completing the missing data and improving them by interpolation method helps effectively in predicting the stability level by deep learning method. . In this study, the Azarshahr aquifer, which has recently faced a significant drop in the underground water level, was examined monthly from 1397 to 1400. Also, in order to complete the data that was not measured for any reason, kriging interpolation methods and M5P algorithm were used. By analyzing each method, the M5P method with the minimum root mean square error of 1.83 meters and correlation coefficient of 0.975 was the best. It had the function. On the other hand, in order to predict the underground water level, the data was divided into 70 and 30 calibration and accuracy measurements, and the deep learning (DL) method was used, which was acceptable with an error of 1.408 meters and an accuracy of 88%. And it can be used in future research for better management of water resources.

کلیدواژه‌ها [English]

  • Prediction
  • Interpolation
  • groundwater level
  • deep learning
  • M5P
  1. Bozorg-Haddad, O., Delpasand, M., & Loáiciga, H. A. (2020). Self-optimizer data-mining method for aquifer level prediction. Water supply, 20(2), 724-736.
  2. Bahmani, R., & Ouarda, T. B. (2021). Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology, 595, 125659.
  3. Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific reports, 10(1), 3904.
  4. Coggin, T. D., & Hunter, J. E. (1983). Problems in measuring the quality of investment information: The perils of the information coefficient. Financial Analysts Journal, 39(3), 25-33.
  5. Cao, Y., Yin, K., Zhou, C., & Ahmed, B. (2020). Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors, 20(3), 845.
  6. Di Nunno, F., & Granata, F. (2020). Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environmental Research, 190, 110062.
  7. Daneshwar Voshoghi, F., & Karimi, A. (2017). Using SOM preprocessing methods and wavelet transform in predicting the underground water level (case study: Azarshahr Plain). Hydrogeology, 3(1), 15-31. (inPersian).
  8. ElHaj, K., Issa, S., Alshamsi, D., & Cherkose, B. A. (2023). Modeling and Prediction of Groundwater Level Fluctuations Using Geoinformatics and Artificial Neural Networks in Al Ain City, UAE. In Water Resources Management and Sustainability: Solutions for Arid Regions, 205-217.
  9. Evans, S. W., Jones, N. L., Williams, G. P., Ames, D. P., & Nelson, E. J. (2020). Groundwater Level Mapping Tool: An open-source web application for assessing groundwater sustainability. Environmental Modelling & Software, 131, 104782.
  10. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21.
  11. Gleeson, T., Alley, W.M., Allen, D.M., Sophocleous, M.A., Zhou, Y., Taniguchi, M., VanderSteen, J. (2012). Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Groundwater, 50, 19-26.
  12. Ghose, D. K., Panda, S. S., & Swain, P. C. (2010). Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. Journal of hydrology, 394(3-4), 296-304.
  13. García-Santos, G., Scheiber, M., & Pilz, J. (2020). Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere, 258, 127231.
  14. Gemitzi, A., & Stefanopoulos, K. (2011). Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. J. Hydrol, 403, 130-140.
  15. Ghahrodi Tali, M. (2002). Evaluation of forecasting by kriging method. Geographical Research, 34(43), 95-108. (in Persian).
  16. Hasda, R., Rahaman, M. F., Jahan, C. S., Molla, K. I., & Mazumder, Q. H. (2020). Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: Modelling approach using artificial neural network. Groundwater for sustainable development, 10, 100361.
  17. Iqbal, M., Naeem, U. A., Ahmad, A., Ghani, U., & Farid, T. (2020). Relating groundwater levels with meteorological parameters using ANN technique. Measurement, 166, 108163.
  18. Jalalkamali, A., Sedghi, H., & Manshouri, M. (2011). Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran. Journal of hydroinformatics, 13(4), 867-876.
  19. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695.
  20. Khedri, A., Kalantari, N., & Vadiati, M. (2020). Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply, 20(3), 909-921.
  21. Kamińska, A., & Grzywna, A. (2014). Comparison of deteministic interpolation methods for the estimation of groundwater level. Journal of Ecological Engineering, 15(4), 55-60.
  22. Khazaz, L., Oulidi, H. J., El Moutaki, S., & Ghafiri, A. (2015). Comparing and Evaluating Probabilistic and Deterministic Spatial Interpolation Methods for Groundwater Level of Haouz in Morocco. Journal of Geographic Information System, 7(06), 76051.
  23. Khosravi, K., Mao, L., Kisi, O., Yaseen, Z. M., & Shahid, S. (2018). Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Hydrol, 567, 165-179.
  24. Kombo, O. H., Kumaran, S., Sheikh, Y. H., Bovim, A., & Jayavel, K. (2020). Long-term groundwater level prediction model based on hybrid KNN-RF technique. Hydrology, 7(3), 59.
  25. Khan, J., Lee, E., Balobaid, A. S., & Kim, K. (2023). A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Applied Sciences, 13(4), 2743.
  26. Kenda, K., Peternelj, J., Mellios, N., Kofinas, D., Čerin, M., & Rožanec, J. (2020). Usage of statistical modeling techniques in surface and groundwater level prediction. Journal of Water Supply: Research and Technology—AQUA, 69(3), 248-265.
  27. Kamasi, M. Guderzi, H., & Bahnia, A. (2016). Investigating the trend of spatio-temporal fluctuations of groundwater level using support vector machine (SVM) and kriging (kriging) case study of Silakhor Plain. Journal of water and soil protection research, 24(4), 195-209. (in Persian).
  28. Li, W., Finsa, M. M., Laskey, K. B., Houser, P., & Douglas-Bate, R. (2023). Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water, 15(19), 3473.
  29. Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173-189.
  30. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  31. Manna, T., & Anitha, A. (2023). Deep Ensemble-Based Approach Using Randomized Low-Rank Approximation for Sustainable Groundwater Level Prediction. Applied Sciences, 13(5), 3210.
  32. Minderhoud, P., Erkens, G., Pham, V., Bui, V.T., Erban, L., Kooi, H., & Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Res. Lett, 12, 064006.
  33. Marchant, B. P., Cuba, D., Brauns, B., & Bloomfield, J. P. (2022). Temporal interpolation of groundwater level hydrographs for regional drought analysis using mixed models. Hydrogeology Journal, 30(6), 1801-1817.
  34. McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe efficiency index. Journal of hydrologic engineering, 11(6), 597-602.
  35. Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction 379-425.
  36. Malik, A., & Bhagwat, A. (2021). Modelling groundwater level fluctuations in urban areas using artificial neural network. Groundwater for Sustainable Development, 12, 100484.
  37. Mohanasundaram, S., Suresh Kumar, G., & Narasimhan, B. (2019). A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions. H2Open Journal, 2(1), 25-44.
  38. Malekzadeh, M., Kardar, S., & Shabanlou, S. (2019). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development, 9, 100279.
  39. Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development,9, 100237.
  40. Mohammadi, J. (2006). Pedometry, the second volume of spatial statistics, Palak Publishing House, 453 p. (in Persian).
  41. Mehdian, M. (2006). The application of geostatistics in soil science, the training workshop on the application of geostatistics in soil science, the first conference on soil, sustainable development and environment, November 17-18, University of Tehran, Tehran, Iran. (in Persian).
  42. Nhu, V. H., Shahabi, H., Nohani, E., Shirzadi, A., Al-Ansari, N., Bahrami, S., ... & Nguyen, H. (2020). Daily water level prediction of Zrebar Lake (Iran): a comparison between M5P, random forest, random tree and reduced error pruning trees algorithms. ISPRS International Journal of Geo-Information, 9(8), 479.
  43. Nadiri, A. and Asghari Moghadam, Sh., & Vediati, M. (2013). Evaluation of various interpolation methods to estimate nitrate pollution in underground water sources (case study: Bilourdi plain, East Azerbaijan province). Hydrogeomorphology, 1(1), 75-92. (in Persian).
  44. Nekoamal Kermani, M., & Mirabbasi Najafabadi, R. (2016). Evaluation of interpolation methods in groundwater level estimation (case study: Serkhon plain). Hydrogeology, 2(2), 84-95. (in Persian).
  45. Omar, P.J., Gaur, S., Dwivedi, S.B., Dikshit, P.K.S. (2019). Groundwater modelling using an analytic element method and finite difference method: An insight into lower ganga river basin. J. Earth Syst. Sci, 128, 195.
  46. Quinlan, J. R. (1993, June). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, 236-243.
  47. Rohde, M. M., Biswas, T., Housman, I. W., Campbell, L. S., Klausmeyer, K. R., & Howard, J. K. (2021). A machine learning approach to predict groundwater levels in California reveals ecosystems at risk. Frontiers in Earth Science, 9, 784499.
  48. Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35.
  49. Ren, H., Cromwell, E., Kravitz, B., & Chen, X. (2022). Using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrology and Earth System Sciences, 26(7), 1727-1743.
  50. Jani, R. (2017). Prioritization of spatial interpolation methods in soil resistance zoning (case study: Shahrak Fazaz). Geographical Space, 18(61), 125-140 (in Persian).
  51. Sihag, P., Mohsenzadeh Karimi, S., & Angelaki, A. (2019). Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Applied Water Science, 9, 1-9.
  52. Seifi, A., Ehteram, M., Singh, V. P., & Mosavi, A. (2020). Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability, 12(10), 4023.
  53. Sayadi Shahraki, A., Boroomand Nasab, S., Naseri, A. A., & Soltani Mohammadi, A. (2021). Estimation of groundwater depth using ANN-PSO, kriging, and IDW models (case study: Salman Farsi Sugarcane Plantation). Central Asian Journal of Environmental Science and Technology Innovation, 2(3), 91-101.
  54. Sharafati, A., Asadollah, S. B. H. S., & Neshat, A. (2020). A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591, 125468.
  55. Shin, M. J., Moon, S. H., Kang, K. G., Moon, D. C., & Koh, H. J. (2020). Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology, 7(3), 64.
  56. Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Heddam, S., Kim, S., ... & Yaseen, Z. (2022). Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing,489, 271-308.
  57. Wu, Z., Lu, C., Sun, Q., Lu, W., He, X., Qin, T., ... & Wu, C. (2023). Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain. Water, 15(4), 823.
  58. Yu, H., Yu, C., Ma, Y., Zhao, B., Yue, C., Gao, R., & Chang, Y. (2021). Determining Stress State of Source Media with Identified Difference between Groundwater Level during Loading and Unloading Induced by Earth Tides. Water, 13, 2843.
  59. Yadav, B., Gupta, P. K., Patidar, N., & Himanshu, S. K. (2020). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment, 712, 135539.
  60. Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Hydrol., 561, 918-929.