ارزیابی عملکرد مدل‌های CMIP6 جهت برآورد دما و بارش در حوضه آبریز سفیدرود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

2 پژوهشکده مطالعات و تحقیقات منابع آب، مؤسسه تحقیقات آب، تهران، ایران.

10.22059/jwim.2024.374623.1155

چکیده

استفاده از دقیق‌ترین روش‌ها و مدل‌ها برای شبیه‌سازی اثر تغییر اقلیم بر متغیرهای آب و هواشناسی در نقاط مختلف جهان اهمیت بسیار زیادی دارد. در این مطالعه، دقت 10 مدل AOGCM مربوط به ششمین گزارش ارزیابی IPCC (CMIP6) برای شبیه‌سازی دما و بارش در حوضه آبریز سفیدرود، موردبررسی قرار گرفت. بدین منظور داده‌های مشاهداتی دما و بارش در 16 ایستگاه هواشناسی واقع در حوضه طی دوره زمانی سال‌های 1980 تا 2014 با خروجی مدل‌های AOGCM مقایسه شدند. جهت انجام این مقایسه از شاخص ترکیبی کلینگ- گوپتا (KGE) استفاده شد. این مقایسه در مقیاس‌های زمانی سالانه و ماهانه انجام و مدل‌های دقیق‌تر در هر دوره زمانی مشخص شدند. نتایج نشان دادند که دقت مدل‌های AOGCM برای برآورد دما در منطقه موردمطالعه از دقت آن‌ها در برآورد بارش بیش‌تر بوده است. هم‌چنین مدل‌های مختلف، دارای توانایی متفاوتی در شبیه‌سازی این متغیرها در ماه‌های مختلف بودند. براساس نتایج به‌دست‌آمده، مدل‌های MIROC6 و MRI-EMS2-0 عملکرد بهتری نسبت به سایر مدل‌ها در برآورد دمای ماه‌های مختلف داشته‌اند. هم‌چنین مدل HadGEM3-GC31-LL در بیش‌تر ماه‌های سال عملکرد مطلوب‌تری نسبت به سایر مدل‌ها در برآورد بارش دوره تاریخی دارا بوده است. براساس نتایج به‌دست‌آمده، لازم است تا قبل از انجام مطالعات شبیه‌سازی تغییر اقلیم در منطقه موردمطالعه، بهترین مدل‌های AOGCM در هر ماه انتخاب و مورداستفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Performance of CMIP6 Models in Estimating Temperature and Precipitation in the Sefidrood Basin

نویسندگان [English]

  • Reza Seraj Ebrahimi 1
  • Mohammad Javad Zareian 2
  • Hossein Dehban 2
1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran.
چکیده [English]

Using the most accurate methods and models to simulate the impact of climate change on meteorological variables in different regions of the world is of utmost importance. In this study, the accuracy of 10 AOGCM models related to the sixth assessment report of the IPCC (CMIP6) was investigated for simulating temperature and precipitation in the Sefidrood Basin. For this purpose, observational data of temperature and precipitation from 16 weather stations located in the basin during the time period from 1980 to 2014 were compared with the output of AOGCMs. The Kling-Gupta Efficiency (KGE) index was utilized for this comparison. The comparison was conducted on both annual and monthly time scales, and the more accurate models were identified for each time period. The results indicated that the accuracy of AOGCM models in estimating temperature in the study area was higher than their accuracy in estimating precipitation. Additionally, different models exhibited varying capabilities in simulating these variables across different months. Based on the results obtained, the MIROC6 and MRI-EMS2-0 models performed better than other models in estimating the temperature of different months. Furthermore, the HadGEM3-GC31-LL model showed a better performance than other models in estimating historical precipitation for most months of the year. Based on the results obtained, it is necessary to select and use the best AOGCM models for each month before conducting climate change simulation studies in the study area.

کلیدواژه‌ها [English]

  • AOGCM Models
  • Climate change
  • KGE Index
  • Simulation
  1. Ansari, M., Dehban, H., Zareian, M.J., & Farokhnia, A. (2022). Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iranaian Water Research Journal, 16(1), 11-24. (In Persian).
  2. Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1), 1-10.
  3. Chen, J., Brissette, F.P., Lucas-Picher, P., & Caya, D. (2017). Impacts of weighting climate models for hydro-meteorological climate change studies. Journal of Hydrology, 549, 534-546.
  4. Dagbegnon, C., Djebou, S., & Singh, V.P. (2016). Impact of climate change on the hydrologic cycle and implications for society. Environment and Social Psychology, 1(1).
  5. (2013). Climate Change 2013: The Physical Science Basis. Final Draft Report of Working Group I, Stockholm, Sweden
  6. Knoben, W.J., Freer, J.E., & Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash- Sutcliffe and Kling- Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331.
  7. Lovino, M.A., Müller, O.V., Berbery, E.H., & Müller, G.V. (2018). Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. International Journal of climatology, 38, 1158-1175.
  8. Mal, S., Singh, R.B., Huggel, C., & Grover, A. (2018). Introducing linkages between climate change, extreme events, and disaster risk reduction. In: Climate change, extreme events and disaster risk reduction. Springer, Cham.
  9. O'Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.F., Lowe, J., & Meehl, G.A. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482.
  10. Ongoma, V., Chen, H., & Gao, C. (2019). Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theoretical and Applied Climatology, 135(3), 893-910.
  11. Parker, W.S. (2013). Ensemble modeling, uncertainty and robust predictions. Wiley interdisciplinary reviews: Climate change, 4(3), 213-223.
  12. Patil, S.D., & Stieglitz, M. (2015). Comparing spatial and temporal transferability of hydrological model parameters. Journal of Hydrology, 525, 409-417.
  13. Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric environment, 43(1), 37-50.
  14. Werndl, C. (2016). On defining climate and climate change. The British Journal for the Philosophy of Science, 67(2), 337-364.
  15. Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250, 105369.
  16. Zamani, R., & Berndtsson, R. (2019). Evaluation of CMIP5 models for west and southwest Iran using TOPSIS-based method. Theoretical and Applied Climatology, 137, 533-543.
  17. Zareian, M.J. (2021). Optimal water allocation at different levels of climate change to minimize water shortage in arid regions (Case Study: Zayandeh-Rud River Basin, Iran). Journal of Hydro-Environment Research, 35, 13-30.
  18. Zareian, M.J., Eslamian, S., & Safavi, H.R. (2015). A modified regionalization weighting approach for climate change impact assessment at watershed scale. Theoretical and Applied Climatology, 122(3), 497-516.