بررسی ویژگی‌های خشک‌سالی هواشناسی و هیدرولوژیکی و رابطه انتشار آن‌ها تحت تأثیر فعالیت‌های انسانی در دشت اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشگاه محقق اردبیلی، اردبیل، ایران.

10.22059/jwim.2024.371936.1141

چکیده

وقوع انواع خشک‌سالی که متأثر از تغییر عوامل اقلیمی و گسترش فعالیت‌های انسانی می‌باشد مدیریت منابع محدود آب را با مشکلات جدی‌تری روبه‌رو کرده است. در این پژوهش به‌منظور بررسی ویژگی‌های خشک‌سالی هواشناسی و هیدرولوژیکی و استخراج رابطه انتشار بین آن دو در حوضه مشرف به ایستگاه سامیان در دشت اردبیل از شاخص‌های SPI و SSI در مقیاس‌های مختلف زمانی استفاده شد. برای انجام این پژوهش، ابتدا میانگین بارش ماهانه منطقه موردمطالعه به‌کمک روش IDW استخراج شد. سپس با تشخیص نقطه تغییر، سری زمانی جریان به دو دوره قبل (طبیعی) و بعد (آشفته) از احداث سد مخزنی یامچی تقسیم و شاخص‌های SPI و SSI برای هر دوره محاسبه شدند. در دوره طبیعی، حدود 30 درصد مواقع خشک‌سالی هیدرولوژیکی حاکم بود ولی سهم خشک‌سالی و ترسالی هواشناسی در این دوره یکسان بوده است. با این‌حال در دوره آشفته، فراوانی وقوع خشک‌سالی هواشناسی کم‌تر از 30 درصد ولی فراوانی وقوع خشک‌سالی هیدرولوژیکی حدود 80 درصد بوده است. این موضوع تأثیر احداث و بهره‌برداری از سد یامچی را به‌خوبی نشان می‌دهد، چرا که در سال­های بعد از احداث سد رژیم هیدرولوژیکی رودخانه تحت تأثیر قرار گرفته و خشک‌سالی بیش‌تری را تجربه کرده است. با توجه به همبستگی بین شاخص‌های SPI و SSI در دو دوره طبیعی و آشفته، رابطه انتشار خشک‌سالی هواشناسی به هیدرولوژیکی از درجه سوم بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating meteorological and hydrological drought characteristics and their propagation relationship under the influence of human activities in Ardabil plain

نویسندگان [English]

  • Erfan Faraji Amogein
  • Amin Kanooni
  • Mahsa Hasanpour Kashani
Department of Water Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

The occurrence of droughts that are affected by the change of climatic factors and the development of human activities have faced more serious problems in the management of limited water resources. In this research, SPI and SSI indices were used in different time scales in order to investigate meteorological and hydrological drought characteristics and extract the propagation relationship between them in the basin overlooking Samian station in Ardabil plain. To conduct the research, first, the average monthly rainfall of the study area was extracted using the IDW method. Then, by identifying the change point, the flow time series was divided into two periods before (natural) and after (disturbed) construction of Yamchi reservoir dam, and SPI and SSI indices were calculated for each period. In the natural period, hydrological drought prevailed about 30% of the time, but the share of hydrological and meteorological droughts was the same in this period. However, in the distributed period, the frequency of meteorological drought was less than 30%, but the frequency of hydrological drought was about 80%. This issue shows the effect of the construction and operation of Yamchi Dam so that in the years after the construction of the dam, the hydrological regime of the river was affected and experienced more drought. According to the correlation between SPI and SSI indices in two natural and disturbed periods, the propagation of meteorological drought to hydrological has been a third-order relationship.

کلیدواژه‌ها [English]

  • Drought propagation
  • Hydrological drought
  • Human activities
  • Meteorological drought
  1. Ashok, K. M., & Vijay, P. (2011). Drought modeling: A review. Journal of Hydrology, 403, 157-175.
  2. Bae, H., Ji, H., Lim, Y. J., Ryu, Y., Kim, M. H., & Kim, B. J. (2019). Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological droughts. Natural Hazards, 99(1), 1-16.
  3. Bevacqua, A. G., Chaffe, P. L., Chagas, V. B., & AghaKouchak, A. (2021). Spatial and temporal patterns of propagation from meteorological to hydrological droughts in Brazil. Journal of Hydrology, 603, 126902.
  4. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific model development discussions, 7(1), 1525-1534.
  5. Chang, J., Li, Y., Wang, Y., & Yuan, M. (2016). Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. Journal of Hydrology, 540, 824-834. https://doi.org/https://doi.org/10.1016/j.jhydrol.2016.06.064
  6. Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65.
  7. Ding, Y., Xu, J., Wang, X., Cai, H., Zhou, Z., Sun, Y., & Shi, H. (2021). Propagation of meteorological to hydrological drought for different climate regions in China. Journal of Environmental Management, 283, 111980.
  8. Fang, W., Huang, S., Huang, Q., Huang, G., Wang, H., Leng, G., & Wang, L. (2020). Identifying drought propagation by simultaneously considering linear and nonlinear dependence in the Wei River basin of the Loess Plateau, China. Journal of Hydrology, 591, 125287.
  9. Faraji, E. & Kanooni, A. (2020). Checking the accuracy of different methods of spatial analysis of monthly rainfall in Ardabil plain. In: The 5th National Congress of Irrigation and Drainage of Iran, 17 June, University of Birjand, Birjand, Province Khorasan Jonoubi, IRAN,
  10. Guo, Y., Huang, S., Huang, Q., Leng, G., Fang, W., Wang, L., & Wang, H. (2020). Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Science of the Total Environment, 712, 136502.
  11. Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.
  12. Huang, S., Li, P., Huang, Q., Leng, G., Hou, B., & Ma, L. (2017). The propagation from meteorological to hydrological drought and its potential influence factors. Journal of Hydrology, 547, 184-195.
  13. Kiem, A., Johnson, F., Westra, S., & Dijk, A. and co authors.(2016). Natural hazards in Australia: Droughts. Climatic Change, 139(1), 37-54.
  14. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology,
  15. Nalbantis, I., & Tsakiris, G. (2009). Assessment of hydrological drought revisited. Water Resources Management, 23, 881-897.
  16. Pettitt, A. N. (1979). A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), 126-135.
  17. Sattar, M. N., Lee, J. Y., Shin, J.-Y., & Kim, T. W. (2019). Probabilistic characteristics of drought propagation from meteorological to hydrological drought in South Korea. Water Resources Management, 33(7), 2439-2452.
  18. Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM national conference, https://doi.org/10.1145/800186.810616
  19. Shin, J. Y., Chen, S., Lee, J.-H., & Kim, T.-W. (2018). Investigation of drought propagation in South Korea using drought index and conditional probability. Terrestrial, Atmospheric & Oceanic Sciences, 29(2).
  20. Wu, J., Chen, X., Yao, H., Gao, L., Chen, Y., & Liu, M. (2017). Non-linear relationship of hydrological drought responding to meteorological drought and impact of a large reservoir. Journal of Hydrology, 551, 495-507.
  21. Xing, Z., Ma, M., Zhang, X., Leng, G., Su, Z., Lv, J., Yu, Z., & Yi, P. (2021). Altered drought propagation under the influence of reservoir regulation. Journal of Hydrology, 603, 127049.
  22. Yao, N., Zhao, H., Li, Y., Biswas, A., Feng, H., Liu, F., & Pulatov, B. (2020). National-scale variation and propagation characteristics of meteorological, agricultural, and hydrological droughts in China. Remote Sensing, 12(20), 3407.
  23. Yevjevich, V. M. (1967). Objective approach to definitions and investigations of continental hydrologic droughts. An Colorado State University. Libraries.
  24. Zhang, T., Su, X., Zhang, G., Wu, H., Wang, G., & Chu, J. (2022). Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin, China. Science of The Total Environment, 819, 153030.
  25. World Meteorological Organization (WMO). (2021). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019). Retrieved from https://library.wmo.int/records/item/51415-atlas-of-mortality-and-economic-losses-from-weather-climate-and-water-extremes-1970-2012
  26. Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. P. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375-390.