برآورد تبخیر-تعرق واقعی با استفاده از داده‌های سنجش از دور به‌منظور بهبود مدیریت آب

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران.

10.22059/jwim.2024.369438.1123

چکیده

کمی‌سازی مکانی ET واقعی برای مدیریت منابع آب و برنامه‌ریزی در مناطق خشک بسیار مهم است. در این پژوهش به بررسی و برآورد  تبخیر-تعرق براساس الگوریتم­های Py_SEBAL و METRIC، مدل WaPOR و محصول MOD16  طی سال­های 2021 و 2022 در دشت مغان واقع در استان اردبیل پرداخته شد. نتایج هر یک از مدل­ها با روش FAO-56 که یک روش استاندارد برای برآورد تبخیر-تعرق در مناطق مختلف است، مقایسه شد. نتایج نشان می­دهد که الگوریتم Py_SEBAL با مقدار 97/0=R و (mm/month)88/1=RMSE بیش‌ترین میزان همبستگی را با مقدار FAO-56 دارد. سپس، الگوریتم METRIC با مقدار 89/0=R و (mm/month) 5/1=RMSE بیش‌ترین میزان همبستگی را داشته است. به‌منظور اعتبارسنجی دقیق‌تر عملکرد مدل‌های برآوردی در مناطق مختلف، از پایگاه WaPOR نیز استفاده شد. خروجی­های به‌دست‌آمده نشان می­دهد که در بین اراضی تحت پوشش شبکه آبیاری الگوریتم Py_SEBAL با مقدار 77/0=R2 بیش‌ترین میزان همبستگی را با مقادیر حاصل از WaPOR دارد. بعد از Py_SEBAL، METRIC با مقدار 55/0=R2 همبستگی به نسبت مناسبی را دارد. با توجه به نقشه کاربری منطقه، بیش از 60 درصد اراضی این منطقه تحت پوشش شبکه آبیاری قرار دارند. ازآنجایی‌که Py_SEBAL در بررسی­های انجام‌شده بهترین نتیجه­ را برای بررسی در این اراضی داشته است، لذا به برآورد حجم میزان  تبخیر-تعرق در سطح کل منطقه پرداخته شد که نتایج حاصله نشان می­دهد حجم میزان تبخیر-تعرق از سطح برابر از اراضی تحت پوشش شبکه آبیاری و اراضی دیم حدود 5/4 برابر در هر هکتار بیش‌تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of actual evapotranspiration using remote sensing data for improved water management

نویسندگان [English]

  • Mohadese Sadat Fakhar
  • Abbas Kaviani
Department of Water Science and Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Spatial quantification of actual evapotranspiration (ET) is crucial for water resource management and planning in arid regions. This research focuses on the investigation and estimation of evapotranspiration using Py_SEBAL and METRIC algorithms, as well as the WaPOR model and MOD16 product, during the years 2021 and 2022 in the Moghan Plain located in Ardabil Province. The results of each model are compared with the FAO-56 method, which is a standard approach for estimating evapotranspiration in different areas. The results indicate that the Py_SEBAL algorithm shows the highest correlation with the FAO-56 method, with an R value of 0.97 and an RMSE (mm/month) of 1.88. Next, the METRIC algorithm demonstrates the highest correlation with an R value of 0.89 and an RMSE (mm/month) of 1.5. To further validate the performance of the estimation models in different areas, the WaPOR database is also utilized. The obtained outputs indicate that among the irrigated lands covered by the water network, the Py_SEBAL algorithm exhibits the highest correlation with the values derived from WaPOR, with an R2 value of 0.77. After Py_SEBAL, METRIC demonstrates a relatively suitable correlation with an R2 value of 0.55. Considering the land use map of the region, more than 60% of the area is covered by the irrigation network. Since Py_SEBAL yields the best results in the conducted investigations for these lands, the estimation of evapotranspiration volume is focused on the entire region. The results indicate that the volume of evapotranspiration is approximately 4/5 times higher per hectare in irrigated lands compared to drylands.

کلیدواژه‌ها [English]

  • Moghan plain
  • METRIC
  • MOD16
  • Py_SEBAL
  • WaPOR
  1. Allen, R., Tasumi, M., Trezza, R., Waters, R., & Bastiaanssen, W. (2002). SEBAL (Surface Energy Balance Algorithms for Land)—Advanced Training and Users Manual—Idaho Implementation (Version 1.0); The Idaho Department of Water Resources: Boise, ID, USA, 2002.
  2. Abtew, W., & Melesse, A. (2012). Evaporation and evapotranspiration: measurements and estimations. Springer Science & Business Media.
  3. Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite‐based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process, 25, 4011-4027.
  4. Allen, R.G. (1977). FAO irrigation and drainage paper.
  5. Allen, R.G., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Kelly, C., & Trezza, R. (2013). Automated calibration of the metric‐landsat evapotranspiration process. JAWRA J. Am. Water Resour. Assoc, 49, 563-576.
  6. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998a). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300, D05109.
  7. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998b). FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration (guidelines for computing crop water requirements). Food Agric. Organ. United Nations, Rome 300.
  8. Allen, R.G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng, 133, 380-394.
  9. Allen, R., Tasumi, M., Trezza, R., Waters, R., & Bastiaanssen, W. (2002). SEBAL (Surface Energy Balance Algorithms for Land)—Advanced Training and Users Manual—Idaho Implementation (Version 1.0); The Idaho Department of Water Resources: Boise, ID, USA, 2002.
  10. Barideh, R., Veysi, S., Ebrahimipak, N., & Davatgar, N. (2022). The challenge of reference evapotranspiration between the WaPOR data set and geostatistical methods. Irrig. D-ain, 71, 1268-1279.
  11. Bastiaanssen, W.G.M., Cheema, M.J.M., Immerzeel, W.W., Miltenburg, I.J., & Pelgrum, H. (2012). Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 48.
  12. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., & Holtslag, A.A.M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol, 212, 198-212.
  13. Bhattarai, N., Quackenbush, L.J., Im, J., & Shaw, S.B. (2017). A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens. Environ, 196, 178-192.
  14. Chen, J.M., Chen, X., Ju, W., & Geng, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. J. Hydrol, 305, 15-39.
  15. Elnmer, A., Khadr, M., Kanae, S., & Tawfik, A. (2019). Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agric. Water Manag, 213, 682-692.
  16. Fakhar, M.S., & Kaviani, A. (2022a). Evaluation of FAO WaPOR product and PYSEBAL algorithm in estimating The amount of water consumed. Iran. J. Soil Water Res. ISNN 2423, 7833. (In Persian).
  17. Fakhar, M.S., & Kaviani, A. (2022b). Estimation of actual evapotranspiration using automatic calibration in PY_SEBAL and METRIC algorithms in Qazvin plain. Iran. J. Soil Water Res. (In Persian).
  18. FAO. (2020). WaPOR Database Methodology: Version 2 Release, April 2020.
  19. FAO, Delft, I.H.E. (2019). WaPOR Quality Assessment. Technical Report on the Data Quality of the WaPOR FAO Database Version 1.0.
  20. Hessels, T., van Opstal, J., Trambauer, P., Bastiaanssen, W., Faouzi, M., Mohamed, Y., & ErRaji, A. (2017). pySEBAL Version 3.3. 7.
  21. Jaafar, H.H., & Ahmad, F.A. (2020). Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ., 238, 111034.
  22. KANG, M., & Cho, S. (2021). Progress in water and energy flux studies in Asia: A review focused on eddy covariance measurements. J. Agric. Meteorol, 77, 2-23.
  23. Kulkarni, A.K., Masuti, R., & Limaye, V.S. (2015). Comparative study of evaluation of evapotranspiration methods and calculation of crop water requirements at Chaskaman command area in Pune region, India. Int. J. Res. Eng. Technol, 4, 326.
  24. Li, Q., Liu, W., Zheng, L., Liu, S., Zhang, A., Wang, P., Jin, Y., Liu, Q., & Song, B. (2023). Divergence in Quantifying ET with Independent Methods in a Primary Karst Forest under Complex Terrain. Water, 15, 1823.
  25. Li, S., Wang, G., Sun, S., Hagan, D.F.T., Chen, T., Dolman, H., & Liu, Y. (2021). Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol, 595, 126037.
  26. Li, T., Xia, J., Zhang, L., She, D., Wang, G., & Cheng, L. (2021). An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. J. Hydrol, 592, 125516.
  27. Maroufpoor, S., Bozorg-Haddad, O., & Maroufpoor, E. (2020). Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm. J. Hydrol, 588, 125060.
  28. Mondal, I., Thakur, S., De, A., & De, T.K. (2022). Application of the METRIC model for mapping evapotranspiration over the Sundarban Biosphere Reserve, India. Ecol. Indic, 136, 108553.
  29. Monteith, J.L. (1965). Evaporation and environment, in: Symposia of the Society for Experimental Biology. Cambridge University Press (CUP) Cambridge, pp. 205-234.
  30. Mu, Q., Heinsch, F.A., Zhao, M., & Running, S.W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519-536.
  31. Mu, Q., Zhao, M., & Running, S.W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ, 115, 1781-1800.
  32. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.
  33. Paredes, P., & Pereira, L.S. (2019). Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation. Agric. Water Manag, 215, 86-102.
  34. Pereira, L.S., Paredes, P., López-Urrea, D.J., & Jovanovic, N. (2021). Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag.
  35. Roerink, G.J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos, 25, 147-157.
  36. Song, L., Liu, S., Kustas, W.P., Zhou, J., Xu, Z., Xia, T., & Li, M. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agric. For. Meteorol, 230, 8-19.
  37. Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. earth Syst. Sci, 6, 85-100.
  38. Teixeira, A.H. de C., Bastiaanssen, W.G.M., Ahmad, M., & Bos, M.G. (2009). Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and validation. Agric. For. Meteorol, 149, 462-476.
  39. Usman, M., Liedl, R., & Awan, U.K. (2015). Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan. J. Hydrol, 525, 26-41.
  40. Vorobevskii, I., Luong, T.T., Kronenberg, R., Grünwald, T., & Bernhofer, C. (2022). Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing. Hydrol. Earth Syst. Sci, 26, 3177-3239.
  41. Wang, Z.-M., Batelaan, O., & De Smedt, F. (1996). A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys. Chem. Earth, 21, 189-193.
  42. Waters, R., Allen, R., Bastiaanssen, W., Tasumi, M., & Trezza, R. (2002). Sebal. Surf. energy Balanc. algorithms land. Idaho implementation. Adv. Train. Users Manual, Idaho, USA.
  43. Wu, B., Zhu, W., Yan, N., Xing, Q., Xu, J., Ma, Z., & Wang, L. (2020). Regional actual evapotranspiration estimation with land and meteorological variables derived from multi-source satellite data. Remote Sens, 12, 332.
  44. Yang, Yanmin, Zhou, X., Yang, Yonghui, Bi, S., Yang, X., & Li Liu, D. (2018). Evaluating water-saving efficiency of plastic mulching in Northwest China using remote sensing and SEBAL. Agric. water Manag, 209, 240-248.
  45. Zhang, Y., Liu, C., Tang, Y., & Yang, Y. (2007). Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos, 112.