بررسی سازگاری گونه گیاهی وتیور در شرایط آبیاری با شیرابه زباله و فاضلاب صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران.

2 گروه کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، واحد فیروزآباد، فیروزآباد، ایران.

10.22059/jwim.2022.333386.940

چکیده

استفاده از فرایندهای طبیعی از جمله گیاه پالایی راه‌حلی مناسب برای کاهش آلودگی آب و خاک است. در این مطالعه به‌منظور بررسی تأثیر شیرابه زباله و فاضلاب صنعتی بر رشد گونه گیاهی وتیور؛ دو آزمایش جداگانه در سال زراعی1400-1399 به‌صورت فاکتوریل در قالب طرح کامل تصادفی و در گلخانه اجرا شد. فاکتورهای آزمایش شامل، شیرابه زباله و فاضلاب صنعتی در سطوح (صفر، 25، 50، 75 و 100 درصد) هر کدام در سه تکرار با دو تنش آبی در دو سطح پنج و 10 روزه اجرا شد. صفات ارزیابی‌شده شامل ارتفاع گیاه، تعداد شاخه، وزن تر و خشک اندام‌های هوایی و وزن تر و خشک اندام زمینی (ریشه) بود. نتایج آزمایش نشان داد آبیاری با شیرابه زباله‌های شهری تأثیر معنی‌داری بر تعداد شاخه (01/0P<)، وزن تر و خشک ریشه در سطح پنج درصد داشت. نتایج کاربرد فاضلاب صنعتی تأثیر معنی‌داری بر ارتفاع و تعداد شاخه (01/0P<)، وزن خشک هوایی، وزن تر و خشک ریشه (05/0P<) داشت. اما تأثیر معنی‌داری بر وزن تر هوایی نداشت (05/0P>). بیش‌ترین اثر افزایشی فاضلاب صنعتی و تنش آبیاری بر ویژگی‌های مورفولوژیکی گیاه وتیور در سطح برهم‌کنشی، تیمار W2A1 (25 درصد فاضلاب صنعتی و تنش پنج روز آبیاری) به‌دست آمده است. نتایج این پژوهش نشان داد، استفاده از تیمارهای شیرابه زباله و فاضلاب صنعتی مخلوط با آب آبیاری جهت آبیاری گونه سازگار وتیور می‌تواند به‌عنوان راه‌کاری برای استفاده از آب‌های نامتعارف در تولید به‌شمار آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Vetiver plant species Compatibility under waste leachate and industrial wastewater irrigation conditions

نویسندگان [English]

  • Sadroddin Abdollahi Mansurkhani 1
  • Mehdi Asadilour 1
  • Ali Farzadian 2
  • Aslan Egdernezhad 1
  • Ali Asareh 1
1 Department of Water Science and Engineering, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran.
2 Agriculture and Natural Resources Department, Islamic Azad University, Firoozabad Branch, Firoozabad, Iran.
چکیده [English]

The use of natural processes such as phytoremediation is a suitable solution to reduce water and soil pollution. In this study, two separate experiments were conducted in the form of a 2019-2020 factorial experimental design in a greenhouse to investigate the effects of sewage leachate and industrial effluents on the growth characteristics of vetiver plant species. The experimental factors included leachate and industrial effluents at concentrations of Zero Percent, 25 Percent, 50 Percent, 75 Percent, and 100 Percent in three replicates with two water use stress in five and 10 days. Characteristics evaluated included plant height, number of branches, fresh and dry weight of shoots, and fresh and dry weight of soil organs (roots). The results showed that irrigation with municipal wastewater leachate had a significant effect on the number of branches (P<0.01), fresh weight, and dry weight of roots at a five Percent level. The results of applying industrial wastewater had a significant effect on height, number of branches (P<0.01), dry weight of vetiver, and fresh and dry weight of roots (P<0.05), but no significant effect on fresh weight of vetiver (P>0.05). The highest additive effect of industrial effluent and irrigation stress on plant morphological characteristics was obtained at the interaction level, W2A1 treatment (25% industrial effluent and five days irrigation stress). The results of this study showed that the use of waste leachate and industrial wastewater mixed with irrigation water to irrigate compatible vetiver species can be considered as a solution for the use of unconventional water in production.

کلیدواژه‌ها [English]

  • Randomized Complete Design
  • Unconventional Waters
  • Vetiveria Zizonicides
  • Water Stress
1. Abdzad, G.A., Amiri, E., Babazadeh, H., & Sedghi, H. (2018). Effect of salinity and irrigation on yield and water use efficiency of peanut varieties. Iranian Journal of Soil and Water Research, 49(2), 329-340. (In Persian).
2. Abedi, K, J., Hakimian, M., Motamedi, A., & Ghods Motahari, A. (2021). Performance of Vetiver system in complementary municipal wastewater treatment. Water and Irrigation Management, 11(2), 275-290. (In Persian).
3. Akbarzadeh, A., Vakhshouri, M., Jamshidi, S., & Khalesidoost M. (2015). Evaluation of the Performance of Vetiveria zizanioides in Removing Nutrients from Wastewater. Journal of Water and Wastewater, 26(1), 57-67. (In Persian).
4. Boonsong, K., & Chansiri, M. (2008). Domestic wastewater treatment using vetiver grass cultivated with floating platform technique. AU Journal of Technology, 12(2), 73-80.
5. Darajeh, N., Truong, P., Rezania, S., Alizadeh, H., & Leung, D. W. M. (2019). Effectiveness of Vetiver grass versus other plants for phytoremediation of contaminated water. Journal of Environmental Treatment Techniques, 7(3), 485-500.
6. Dudai, N., Putievsky, E., Chaimovitch, D., & Ben-Hur, M. (2006). Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions. Journal of Environmental Management, 81, 63-71.
7. Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural water management, 96(9), 1275-1284.
8. Ghaemi, A. A., & Majdeddin, F. (2016). Investigation of the Phytoremediation of Vetiver and Eucalyptus by Absorption of Heavy Metals from Sewage in a Contaminated Soil with Landfill. Water Resources Engineering, 9(28), 95-106. (In Persian).
9. Hesham, R., & Rashed, I. G. (2002). A method for treating wastewater containing formaldehyde. Water Res, 36(3), 633-637.
10. Kafil, M., Boroomand Nasab, S., Moazed, H., & Bhatnagar, A. (2019). Phytoremediation potential of vetiver grass irrigated with wastewater for treatment of metal contaminated soil. International Journal of Phytoremediation, 21(2), 92-100.
11. Mohebbi najmabadi, E., Fotovat, A., & Halajnia, A. (2019). Effect of Citric Acid, Nitrilotriacetic acid and Anion Polyacrylamide on Phytoremediation of Nickel by Maize and Sunflower. Iranian Journal of Soil and Water Research, 50(4), 933-921. (In Persian).
12. Mu, J., Hu, Z., Huang, L., Tang, S., & Holm, P. E. (2019). Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils. Journal of Soils and Sediments, 19(5), 2277-2289.
13. Mushtaq, S., & Moghaddasi, M. (2011). Evaluating the potential of deficit irrigation asan adaptive response to climate change and environment demand. Environmental Science and Policy, 14, 1139-1150.
14. Ng, C. C., Boyce, A. N., Abas, M. R., Mahmood, N. Z., & Han, F. (2020). Evaluation of Vetiver Grass Uptake Efficiency in Single and Mixed Heavy Metal Contaminated Soil. Environmental Processes, 1-20.
15. Otieno, A., Karuku, G., Raude, J., & Koech, O. (2018). Accumulation Of Nitrogen And Phosphorous By Vetiver Grass (Chrysopogon zizanioides) In A Model Constructed Wetland Treatment System For Polishing Municipal Wastewater. International Journal of Innovation and Applied Studies, 22(4), 291-298.
16. Panbekar, F., Mokhtari, B., Rastegarzadeh, S., & kolahi, M. (2018). Phytochemical Study, Phenolic Assay and Antioxidant Capacity of Vetiver (Chrysopogon zizanioides) Root Extract. Developmental Biology, 10(4), 45-58. (In Persian).
17. Panja, S., Sarkar, D., & Datta, R. (2020). Removal of tetracycline and ciprofloxacin from wastewater by vetiver grass (Chrysopogon zizanioides (L.) Roberty) as a function of nutrient concentrations. Environmental Science and Pollution Research, 27(28), 34951-34965.
18. Pentyala, V. B., & Eapen, S. (2020). High efficiency phytoextraction of uranium using Vetiveria zizanioides L. Nash. International Journal of Phytoremediation, 1-10.
19. Percy, I., & Truong, P. (2003). Landfill leachate disposal with irrigated vetiver grass. Nat. Conf. Landfill, Brisbane, Australia, 1-10.
20. Raj, D., & Maiti, S. K. (2020). Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): an epitomised review. Environmental Monitoring and Assessment, 192(2), 1-20.
21. Shabbir, A., Khan, M. M. A., Sadiq, Y., Jaleel, H., Ahmad, B., & Uddin, M. (2017). Regulation of functional activities and essential oil production in Vetiveria zizanioides L. Nash after γ-irradiated sodium alginate elicitation. Turkish Journal of Biology, 41(4), 661-672.
22. Shahid, S., Zahoor, S. and Fatima, U. (2018). Review of Pharmacological Activities of Vetiveria zizanoide (Linn) Nash. Journal of Basic and Applied Sciences, 14, 235-238.
23. Sharma, R., grawal, M.A., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Safety, 66, 258-266.
24. Singh, P. K., Deshbhratar, P. B., & Ramteke, D. S. (2012). Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agricultural Water Management, 103, 100-104.
25. Tanner, C.C., & Headlby, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37, 474-486.
26. Truong, P., & Hart, B. (2001). Vetiver system for wastewater treatment: Technical Bulletin no. 21. Pacific Rim Vetiver Network. Office of the Royal Development Projects Board, Bangkok, Thailand.
27. Truong, P. N.V. (2008). Research and development of Vetiver grass for treatment of polluted water and contaminated land: Proc. 1th Indian National Vetiver Workshop, Cochi, Kerala, India.
28. Tsao, D.T. (2003). Over view of phytotechnologies. Advances in Biochemical Engineering/biotechnology, 78, 1-50.
29. Tsujino, R., Fujita, N., Katayama, M., Kawase, D., Matsui, K., Seo, A., Shimamura, T., Takemon, Y., Tsujimura, N., Yumoto, T., & Ushimaru, A. (2010). Restoration of floating mat bog vegetation after eutrophication damages by improving water quality in a small pond. Limnology, 11(3), 289-297.
30. Vandemoortel, A.M.K., Meers, E., Pauw, N.D., & Tack, F.M.G. (2010). Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, and Soil Pollution, 212(1), 181-297.
31. Weragoda, S.K., Jinadasa, K.B.S.N., Zhang, D.Q., Gersberg, R.M., Tan, S.K., Tanaka, N., & Jern, N.W. (2012). Tropical Application of Floating Treatment Wetlands. Wetlands, 32(5), 955-961.
32. Xu, C., & Mou, B. (2016). Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. Journal of the American Society for Horticultural Science, 141(1), 12-21.