ارزیابی شبکه پایش کمی و کیفی آب زیرزمینی دشت دز با استفاده از تئوری آنتروپی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران .

2 گروه مهندسی محیط زیست، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

10.22059/jwim.2023.362989.1093

چکیده

در این مطالعه جهت پایش کمی و کیفی آب زیرزمینی آبخوان دشت دزفول در خصوص بررسی تغییرات زمانی و مکانی و هم‌چنین بررسی افزونگی و کمبود ایستگاه در محدوده آبخوان از تئوری آنتروپی و آزمون من-کندال اصلاح‌شده استفاده شد. مقادیر سطح آب زیرزمینی (28 ایستگاه)، هدایت الکتریکی و کلر (30 ایستگاه) در بازه زمانی 98-1378 موردبررسی قرار گرفت. نتایج بررسی تغییرات روند نشان‌دهنده عمده تغییرات افزایشی مقادیر کیفی (80 درصد ایستگاه­ها) و عمده تغییرات کاهشی مقادیر سطح آب زیرزمینی (53 درصد ایستگاه­ها) می­باشد. جهت بررسی اثر متقابل ایستگاه­های موردمطالعه از آزمون رگرسیون چندمتغیره استفاده شد. مدل رگرسیون چندمتغیره به‌طور متوسط میزان خطایی برابر با 10/0 میلی­گرم بر لیتر در شبیه­سازی مقادیر کلر، 15 میکروموس بر سانتی­متر برای شبیه­سازی مقادیر هدایت الکتریکی و 49/0 متر در شبیه­سازی مقادیر سطح آب زیرزمینی را ارائه کرد. با بررسی تئوری آنتروپی، مقادیر شاخص انتقال اطلاعات نشان‌دهنده شرایط متوسط سطح آب زیرزمینی و شرایط نسبتاً مازاد مقادیر کیفی از نظر تبادل اطلاعات در منطقه بود. انتقال اطلاعات کلر در جنوب‌غربی آبخوان و انتقال اطلاعات سطح آب زیرزمینی در جنوب‌شرقی آبخوان در حالت کمبود قرار دارد. با توجه به شرایط موجود در خصوص پایش کمی و پایش هدایت الکتریکی آب زیرزمینی، آبخوان دزفول در شرایط مناسبی قرار داشته و پراکندگی ایستگاه­ها نیز مناسب می­باشد، اما در خصوص پایش بهینه آبخوان از نظر انتقال اطلاعات کلر، نیاز به وجود ایستگاه در جنوب‌شرقی آبخوان احساس می­شود. با رتبه­بندی ایستگاه­ها با استفاده از اطلاعات خالص تبادلی، ایستگاه­های برتر در مورد مقادیر کمی و کیفی معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Quantitative and Qualitative Groundwater Monitoring Network of Dez Plain Using Entropy Theory

نویسندگان [English]

  • Leila Moradipour 1
  • Ahmad Fathi 2
  • Farshad Ahmadi 3
1 Department of Environmental Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Department of Environmental Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this study, entropy theory and the modified Mann-Kendall test were used to monitoring the quality and quantity of groundwater in the Dez Plain regarding temporal and spatial changes, as well as the excess and deficiency of stations in the aquifer. The values of groundwater level (28 stations), electrical conductivity and chlorine (30 stations) in the period of 1999-2019 were investigated in this study. The results of the analysis of trend changes show major increasing trend in qualitative values (80% of stations) and major decreasing trend in groundwater level values (53 percent of stations). The multivariable regression model has an average error of 0.10 mg/liter in the simulation of chlorine values, 15 μm/cm for the simulation of electrical conductivity values, and 0.49 m in the simulation of groundwater level values. By examining the entropy theory, the values of the information transfer index indicated the average conditions of the groundwater level and relatively excess conditions of qualitative values in terms of information transfer in the region. The transmission of chlorine information in the southwest of the aquifer and the transmission of groundwater level information in the southeast of the aquifer are in a state of deficiency. According to the existing conditions regarding the quantitative monitoring and electrical conductivity monitoring of the groundwater, the Dez aquifer is in a good condition and the distribution of the stations is also suitable, but regarding the optimal monitoring of the aquifer in terms of transmission of chlorine information, the need for a station in the southeast of the aquifer is felt. By ranking the stations using net exchange information, the best stations were introduced in terms of quantitative and qualitative values.

کلیدواژه‌ها [English]

  • Continuous monitoring
  • Information transfer
  • Mann-Kendall
  • Mutual influence
  1. Adib, A., & Zamani, R. (2015). Evaluation of the spatial variability of groundwater quality factors in the dezful plain using geostatistics methods. Water Engineering, 8(27), 1-12. (In Persian).
  2. Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., & Kumar, R. (2022). Spatiotemporal analysis of precipitation and temperature concentration using PCI and TCI: a case study of Khuzestan Province, Iran. Theoretical and Applied Climatology, 1-18.
  3. Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., Khalili, K., & Jhajharia, D. (2018). Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25(2), 314-321.
  4. Bageri, F., Khalili, K., & Nazeri Tahrudi, M. (2023). Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network. Water and Irrigation Management, 13(1), 123-139.
  5. Burn, D. H., & Elnur, M. A. H. (2002). Detection of hydrologic trends and variability. Journal of hydrology, 255(1-4), 107-122.
  6. Gautam, U., Tiwari, V., & Tripathi, V. K. (2022). Evaluation of groundwater quality of Prayagraj city using entropy water quality index (EWQI) and new integrated water quality index (IWQI). Sustainable Water Resources Management, 8(2), 57.
  7. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196.
  8. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review106(4), 620.
  9. Kendall, M. G. (1975). Rank Correlation Measures; Charles Griffin Book Series.
  10. Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic environmental research and risk assessment30(4), 1205-1221.
  11. Khaliq, M. N., Ouarda, T. B., & Gachon, P. (2009). Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: The effect of short-and long-term persistence. Journal of Hydrology, 369(1-2), 183-197.
  12. Kumar, S., Merwade, V., Kam, J., & Thurner, K. (2009). Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology, 374(1-2), 171-183.
  13. Luo, Y., Liu, S., Fu, S., Liu, J., Wang, G., & Zhou, G. (2008). Trends of precipitation in Beijiang River basin, Guangdong province, China. Hydrological Processes: An International Journal, 22(13), 2377-2386.
  14. Mann, H. (1945). Non-parametric tests against trend. Econometria, 13, MathSci Net, 245-259.
  15. Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management16, 37-49.
  16. Mogheir, Y., De Lima, J. L. M. P., & Singh, V. P. (2009). Entropy and multi-objective based approach for groundwater quality monitoring network assessment and redesign. Water resources management23, 1603-1620.
  17. Nazeri Tahroudi, M., Khashei Siuki, A., & Ramezani, Y. (2019a). Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory. Environmental monitoring and assessment191, 1-17.
  18. Nazeri Tahroudi, M., Ramezani, Y., & Ahmadi, F. (2019b). Investigating the trend and time of precipitation and river flow rate changes in Lake Urmia basin, Iran. Arabian Journal of Geosciences12(6), 1-13.
  19. Ramezani, Y., Pourreza-Bilondi, M., Yaghoobzadeh, M., & Nazeri Tahrudi, M. (2018). Qualitative Monitoring of Drinking Water Using Entropy Indices (Case Study: Central Aquifer of Birjand Plain). Iranian Journal of Irrigation & Drainage12(3), 556-568.
  20. Rostami, F., Attarod, P., Keshtkar, H., & Nazeri Tahroudi, M. (2022). Impact of climatic parameters on the extent of mangrove forests of southern Iran. Caspian Journal of Environmental Sciences, 20(4), 671-682.
  21. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
  22. Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
  23. Tabatabaei, S. M., Dastourani, M., Eslamian, S., & Nazeri Tahroudi, M. (2022). Ranking and optimizing the rain-gauge networks using the entropy–copula approach (Case study of the Siminehrood Basin, Iran). Applied Water Science12(9), 214.
  24. Tahroudi, M. N., Siuki, A. K., & Ramezani, Y. (2019). Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory. Environmental monitoring and assessment191(4), 1-17.
  25. Taj, M., Drikvand, E., & Razaz, M. (2018). Evaluation of groundwater water quality based on natural parameters of land layers (EC, DO, TH, PH) case study: Dezful plain(IRAN). Journal of Water Science & Engineering, 8(22), 81-67. (In Persian).
  26. Thiel, H. (1950, February). A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A (Vol. 53, pp. 1397-1412).