ارزیابی زمانی و مکانی پایگاه‌های جهانی بارش (حوضه‌های آبریز درجه دو ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی آب، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران.

10.22059/jwim.2023.359108.1076

چکیده

در این پژوهش هدف ارزیابی پایگاه داده­های بارش با مقادیر مشاهداتی به‌صورت زمانی (ماهانه و فصلی) و مکانی (دو حالت نقطه­ای (40 ایستگاه سینوپتیک) و سطحی (30 حوضه آبریز درجه دو و چهار اقلیم))، در کشور به‌عنوان منطقه مطالعاتی می­باشد. بدین منظور ابتدا داده­های مشاهداتی (100 ایستگاه در مقیاس روزانه) و پایگاه­های جهانی بارش شامل ERA5، MRRRA2، GLDAS و TERRA (با تفکیک مکانی مختلف در مقیاس ماهانه) طی دوره زمانی 1398-1366 گرد­آوری و استخراج گردید. سپس براساس شاخص خشکی، طبقه­بندی اقلیمی ایستگاه­ها و حوضه­ها انجام شده است. ارزیابی دقت پایگاه‌ها با استفاده از معیارهای ضریب همبستگی (R)، میانگین خطای اریبی (MBE) و مجذور میانگین مربع خطا استانداردشده (NRMSE) استفاده شده است. نتایج معیارهای در بارش ایستگاهی نشان داد که پایگاه TERRA در همه فصول به‌جز تابستان و در اقلیم­های فراخشک، خشک و نیمه‌خشک، با متوسط 70 درصد ضریب همبستگی بالاتر از 5/0 (R) و میزان خطای 90 درصد کم‌تر از 5/0 (NRMSE) نسبت به بقیه­ها پایگاه­ها و در اقلیم مرطوب پایگاه ERA5 عملکرد بهتری را از خود نشان داد. در بارش حوضه­ای نیز نشان داد به‌ترتیب پایگاه TERRA در اقلیم فرا­خشک، پایگاه­های ERA5، MRRRA2، GLDAS  و TERRA در اقلیم خشک، پایگاه­های ERA5 و TERRA در اقلیم نیمه‌خشک و پایگاه‌های ERA5، TERRA و MERRA2 در اقلیم مرطوب با متوسط 80 درصد ضریب همبستگی بالاتر از 5/0 و میزان خطای 70 درصد کم‌تر از 5/0 کارایی مناسب‌تری را نشان دادند. به‌طور کلی پایگاه TERRA در حالت نقطه­ای، سطحی و اقلیمی از عملکرد خوبی برخوردار بوده است که می‌توان گفت به‌علت دقت مکانی بالای آن بوده باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Temporal and Spatial Evaluation of Global Precipitation Products (Iran's Sub Basins)

نویسندگان [English]

  • Fatemeh Moghaddasi
  • mahnoosh moghaddasi
  • Mehdi Mohammadi
Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran.
چکیده [English]

The goal of this study, is to evaluate temporal (monthly) and spatial (in both point scale (40 synoptic stations) and region scale (30 river basins and four climate zones) global propitiation products with observational values in Iran as case study. To this end, first observational data (100 synoptic on a daily scale) and global precipitation products including ERA5, MRRRA2, GLDAS and TERRA (with different spatial resolution on a monthly scale) during the period of 1366-1398, were collected and extracted. Then, the stations and river basins were classified based on aridity index. Statistics criteria's such as coefficient of determination (R2), normalized square root mean square error (NRMSE) and mean oblique error (MBE) were used to compare the data products with observational data. The results of the criteria in point scale showed that the TERRA products in all seasons except summer and in the Hyper-arid, Arid and Semi-arid climate, with an average of 70 precent correlation coefficient higher than 0.5 (R) and 90 precent error rate less than 0.5 (NRMASE) showed a better performance than the rest of the products and in the Humid climate zones of the ERA5 product. In region scale, it also showed that TERRA product in Hyper-arid, ERA5, MRRRA2, GLDAS and TERRA products in Arid climate zones, ERA5 and TERRA products in Semi-arid climate and ERA5, TERRA and MERRA2 showed more suitable efficiency in Humid climate with an average of 80% correlation coefficient higher than 0.5 and 70 precent error rate less than 0.5. Consequently, the TERRA and MERRA2 product in point, region and climate has had good performance.

کلیدواژه‌ها [English]

  • Basin
  • Climate
  • ERA5
  • GLDAS
  • Global precipitation products
  • MERRA2
  • TERRA
  1. Camici, S., Ciabatta, L., Massari, C., & Brocca, L. (2018). How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area. Journal of Hydrology, 563, 950–961.
  2. Darand, M., Amanollahi, J., & Zandkarimi, S. (2017). Evaluation of the performance of TRMM multi-satellite precipitation analysis (TMPA) estimation over Iran. Atmospheric Research ,190, 121-127.
  3. Darand, M., & Khandu, K. (2020). Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. Journal of Arid Environments ,178, 104172.
  4. Dezfooli, D., Abdollahi, B., Hosseini-Moghari, S.M., & Ebrahimi, K. (2018). A comparison between high-resolution satellite precipitation estimates and gauge measured data: case study of Gorganrood basin, Iran. Journal of Water Supply: Research and Technology–AQUA ,67 (3), 236-251.
  5. Eghdami, M., Barros, A.P. (2019). Extreme orographic rainfall in the eastern andes tied to cold air intrusions. Frontiers in Environmental Science, 7, 101.
  6. Erfani, A., Babaeian, I., & Entezari, A. (2020). ERA-Interim. Journal of Climate Research, 1398(38), 77-92.
  7. Faridzad, M., Yang, T., Hsu, K., Sorooshian, S., & Xiao, C. (2018). Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, 563, 123-142.
  8. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of climate, 30(14), 5419-5454.
  9. Ghalenimohammadi, M., & Sharafi, S. (2022). Evaluating the accuracy of CRU TS4.05 and ERA5 databases for the variables of precipitation, temperature and potential transpiration in different climates of Iran. Iran Irrigation and Drainage Journal, 16(5), 879-890. (In Persian).
  10. Ghozat, A., Sharafati, A., & Hosseini, S.A. (2020). Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theoretical and Applied Climatology, 1-15. 143, 211-225.
  11. Habib, E., Henschke, A., & Adler, R. F. (2009). Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmospheric Research, 94(3),373-388.
  12. Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., ... & Zuo, H. (2018). Operational global reanalysis: progress, future directions and synergies with NWP. 27, 63.
  13. Hosseini, Z.S.,Moghaddasi, M., & Paymozd, Sh. (2022). Accuracy assessment of ECMWF datasets in prediction of climate data and drought monitoring of Qarechai basin of Markazi Province. Iran water and soil research, 53(4), 715-732. (In Persian).
  14. Hosseini-Moghari, S.M., & Tang, Q. (2020). Validation of GPM IMERG-V05 and v06 precipitation products over Iran. Journal of Hydrometeorology, 2020.21(5), 1011-1037
  15. Hosseini-Moghari, S.M., Araghinejad, S., & Ebrahimi, K. (2018). Spatio-temporal evaluation of global gridded precipitation datasets across Iran. Hydrological Sciences Journal ,63 (11), 1669-1688.
  16. Javanmard, S., Yatagai, A., Nodzu, M., BodaghJamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3b42 over Iran. Advances in Geosciences, 25, 119-125.
  17. Katiraie-Boroujerdy, P.S., Nasrollahi, N., Hsu, K.L., & Sorooshian, S. (2016). Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theoretical and applied climatology, 123, 387-398.
  18. Katiraie-Boroujerdy, P.S., Nasrollahi, N., Hsu, K.L., & Sorooshian, S. (2016). Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theoretical and Applied Climatology ,123 (1-2), 387-398.
  19. Farshad, Eds., World Soils Book Series.Mishra, A. K., Singh, V. P., & Jain, S. K. (2010). Impact of global warming and climate change on social development. Journal of Comparative Social Welfare, 26(2-3), 239-260
  20. Moazami, S., Golian, S., Hong, Y., Sheng, C., & Kavianpour, M.R. (2016). Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrological Sciences Journal, 61 (2), 420-440.
  21. Moshir Panahi, D., Kalantari, Z., Ghajarnia, N., Seifollahi-Aghmiuni, S., & Destouni, G. (2020). Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Scientific reports, 10(1), 7450.
  22. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., & Dubash, N.K. (2014). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC 2014.
  23. Pom´eon, T., Jackisch, D., & Diekkrüger, B. (2017). Evaluating the performance of remotely sensed and reanalysed precipitation data over west Africa using HBV light. Journal of Hydrology, 547, 222–235.
  24. Rahmati, A., Bakhtar, A., Shayeghi, A., Kalantari, Z., Bavani, A. M., & Ghajarnia, N. (2022). Spatio-temporal performance evaluation of 14 global precipitation estimation products across river basins in southwest Iran. Journal of Hydrology: Regional Studies, 44, 101269
  25. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., & Kim, G.-K. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Clim, 24, 3624-3648.
  26. Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381-394.
  27. Saemian, P., Hosseini-Moghari, S. M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 127054.
  28. Saemian, P., Elmi, O., Vishwakarma, B., Tourian, M., & Sneeuw, N. (2020). Analyzing the lake urmia restoration progress using ground-based and spaceborne observations. Science of The Total Environment, 739, 139857.
  29. Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades?. Journal of Hydrology: Regional Studies, 41, 101095.
  30. Salman, S.A., Shahid, S., Ismail, T., Al-Abadi, A.M., Wang, X.J., & Chung, E.S. (2019). Selection of gridded precipitation data for Iraq using compromise programming. Measurement ,132, 87-98.
  31. Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19703-19708.
  32. Shokoohi, A., & Morovati, R. (2015). Basinwide comparison of RDI and SPI within an IWRM framework. Water Resources Management, 29 (6), 2011-2026.
  33. Sorooshian, S., AghaKouchak, A., Arkin, P., Eylander, J., Foufoula-Georgiou, E., Harmon, R., ... & Skofronick-Jackson, G. (2011). Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society, 92(10), 1353-1357.
  34. Sorooshian, S., Hsu, K-L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9), 2035-2046.
  35. Su, F., Hong, Y., & Lettenmaier, D.P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. Journal of Hydrometeorology, 9 (4), 622-640.
  36. Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56 (1), 79-107.
  37. Tang, Y., Zhong, S., Luo, L., Bian, X., Heilman, W. E., & Winkler, J. (2015). The potential impact of regional climate change on fire weather in the United States. Annals of the Association of American Geographers, 105(1), 1-21.
  38. Woznicki, S.A., Nejadhashemi, A.P., Tang, Y., & Wang, L. (2016). Large-scale climate change vulnerability assessment of stream health. Ecological Indicators, 69, 578-594.
  39. Xu, H., Xu, C.Y., Chen, S., & Chen, H. (2016). Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. Journal of Hydrology, 542, 343-356.
  40. Yin, W., Fan, Z., Tangdamrongsub, N., Hu, L., & Zhang, M. (2021). Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE–A case study over the state of Victoria, Australia. Journal of Hydrology, 602, 126735
  41. Zhang, M., Teng, Y., Jiang, Y., Yin, W., Wang, X., Zhang, D., & Liao, J. (2022). Evaluation of terrestrial water storage changes over china based on GRACE solutions and water balance method. Sustainability, 14(18), 11658.