ارزیابی مدل‌‏‎های محاسبات نرم در همگن‌بندی هیدرولوژیکی سیلاب ناحیه‌ای (مطالعه موردی: حوضه ‏آبریز کرخه)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی، واحد تهران مرکزی، تهران، ایران.

2 گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.

10.22059/jwim.2023.354624.1054

چکیده

شناسایی گروه­‌های همگن هیدرولوژیک یکی از مباحث بنیادی هیدرولوژی در دو بعد کاربردی و تحقیقاتی است. یکی از روش­‌های معمول به‌منظور دستیابی به مناطق همگن هیدرولوژیکی برای برآورد منطقه‌­ای سیلاب، استفاده از روش­‌های خوشه­‌بندی است. در این پژوهش استفاده، ارزیابی و مقایسه روش­های آماری و روش‌های مبتنی بر هوش مصنوعی به‌منظور خوشه‌­بندی حوضه آبریز کرخه مورد بررسی قرار گرفته است. از خوشه‌بندی SOM، K-means و سلسله‌مراتبی برای منطقه موردمطالعه استفاده شد. در ادامه نیز بررسی همگنی هیدرولوژیکی مناطق به‌دست‌آمده با استفاده از روش گشتاورهای خطی و تعدیل ناهمگنی با استفاده از روش‌­های پیشنهادی توسط هاسکینگ و والیس ارزیابی شد. نتایج نشان داده که منطقه موردمطالعه قابلیت تبدیل به دو خوشه را دارد. مقادیر آماره همگنی برای خوشه‌­های اول و دوم به‌ترتیب معادل 0/33 و 0/17 محاسبه گردید که نشان‌دهنده همگنی هر یک از مناطق می‌باشد. با توجه به کوتاهی دوره آماری در برخی از ایستگاه‌­ها، نواقص آماری و قابل‌اعتمادبودن نتایج تحلیل فراوانی منطقه­ای، در برآورد سیلاب حوضه­‌های آبریز دیگر از این روش استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Soft Computing Models for Hydrologically Homogenizing Regional Floods (Case study: Karkheh river basin)

نویسندگان [English]

  • SAHAR SAFARI 1
  • Mohammad Sadegh Sadeghian 2
  • hooman hajikandi 2
  • S.Sajad mehdizadeh 2
1 Water Resources Engineering and Management, Department of civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran branch, Islamic Azad University, Tehran, Iran.‎
2 Department of civil engineering, Faculty of civil and earth resources engineering, Central Tehran branch, Islamic Azad university, Tehran, Iran.‎
چکیده [English]

Identification of homologous hydrological groups is one of the fundamental topics in hydrology in both applied and research dimensions. One of the common methods to achieve homogeneous hydrological zones for estimating flood zones is the use of clustering methods. In this study, the using, evaluation and comparison of statistical methods and methods based on artificial intelligence for clustering Karkheh catchment have been investigated. SOM, K-meansand hierarchical clustering were used for the study area. In the following, the study of hydrological homogeneity of the obtained areas was evaluated using the linear torque method and the heterogeneity adjustment was evaluated using the methods proposed by Husking and Wallis. The results show that the study area can be converted into two clusters. The values ​​of homogeneity statistics for the first and second clusters were calculated to be 0.33 and 0.17, respectively, which indicates the homogeneity of each region. Due to the short statistical period in some stations, statistical shortcomings and the reliability of the results of regional frequency analysis, this method should be used in estimating floods in other catchments.

کلیدواژه‌ها [English]

  • Clustering
  • Flood
  • Homogeneous areas
  • Karkheh Basin
  • Self-organizing map
  1. Abedini, M., Pour Farrash Zadeh, F., & Gharachorlu, -. M. (2021). Analysis and Modeling of the Relationship between Monthly Discharge and Geomorphometric Characteristics (Case Study: Kashafrood Watershed). Geography and Environmental Planning32(4), 29-44. (In Persian)
  2. Ataei, H., & Shiran, M. (2011). Identifying homogeneous hydrological basins base on effective geomorphologic variants on flood by cluster analysis Introduction. Geography and Environmental Planning22(2), 79-98. (In Persian)
  3. Ahn, H., Shin, J. Y., Jeong, C., & Heo, J. H. (2018). Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea. Journal of Korea Water Resources Association, 51(5), 383-393.
  4. Arora, A., Arabameri, A., Pandey, M., Siddiqui, M. A., Shukla, U. K., Bui, D. T., ... & Bhardwaj, A. (2021). Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment750, 141565.
  5. Asghari Sersekanroud, S., & Saeedi Seta, A. (2023). Investigating the Effects of Land Use Changes on the Runoff of Qara Chai River Basin Using the SWAT Model. Geography and Environmental Planning34(3), 95-118. (In Persian)
  6. Chang, L. C., Wang, W. H., & Chang, F. J. (2021). Explore training self-organizing map methods for clustering high-dimensional flood inundation maps. Journal of Hydrology, 595, 125655.
  7. Chavoshi, S., Azmin Sulaiman, W. N., Saghafian, B., Sulaiman, M. N., & Latifah, A. M. (2012). Soft and hard clustering methods for delineation of hydrological homogeneous regions in the southern strip of the C aspian S ea W atershed. Journal of Flood Risk Management5(4), 282-294.
  8. Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence, (2), 224-227.
  9. Dehariya, V. K., Shrivastava, S. K., & Jain, R. C. (2010, November). Clustering of image data set using K-meansand fuzzy K-meansalgorithms. In 2010 International conference on computational intelligence and communication networks (pp. 386-391). IEEE.
  10. Drissia, T. K., Jothiprakash, V., & Sivakumar, B. (2022). Regional flood frequency analysis using complex networks. Stochastic Environmental Research and Risk Assessment, 36(1), 115-135.
  11. Eslamian, S. S., Abrishamchi, A., & Farzamnia, K. (1999). Regionalizing Flood Frequency Estimation by Cluster Analysis. Journal of Water and Wastewater; Ab va Fazilab. (In Persian)
  12. Eslaminezhad, S. A., Eftekhari, M., Mahmoodizadeh, S., Akbari, M., & Haji Elyasi, A. (2021). Evaluation of Tree-Based Artificial Intelligence Models to Predict Flood Risk using GIS. Iran-Water Resources Research17(2), 174-189. (In Persian)
  13. Farsadnia, F., & Moghaddamnia, A. (2014). Regional Flood Frequency Analysis by Self-Organizing Feature Maps and Fuzzy Clustering Approach. Iran-Water Resources Research9(3), 24-36. (In Persian)
  14. Farsadnia, F., & Ghahreman, B. (2015). Using Hierarchical Clustering in Order to Increase Efficiency of Self-Organizing Feature Map to Identify Hydrological Homogeneous Regions for Flood Estimation. Water and Soil29(5), 1207-1218. (In Persian)
  15. Gao, Q., Li, G., Bao, J., & Wang, J. (2021). Regional Frequency Analysis Based on Precipitation Regionalization Accounting for Temporal Variability and a Nonstationary Index Flood Model. Water Resources Management, 35(13), 4435-4456.
  16. Ghaderi K, Motamedvaziri B, Vafakhah M, Dehghani A. Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds. JWSS, 25 (4), 313-326 . (In Persian)
  17. Ghosh, S., Saha, S., & Bera, B. (2022). Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Natural Hazards Research.
  18. Hosking, J.R.M., & Wallis, J.R. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29(2), 271-281. (Correction: 31(1), 1995, p. 251).
  19. Inyang, U. G., Akpan, E. E., & Akinyokun, O. C. (2020). A hybrid machine learning approach for flood risk assessment and classification. International Journal of Computational Intelligence and Applications, 19(02), 2050012.
  20. Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., Rahimzadeh kivi, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment193, 1-20.
  21. Kohonen T. (2001). Self-Organizing Maps. Springer, Berlin, Germany.
  22. Kumar, R., Goel, N. K., Chatterjee, C., & Nayak, P. C. (2015). Regional flood frequency analysis using soft computing techniques. Water Resources Management, 29(6), 1965-1978.
  23. Ley, R., Casper, M.C., Hellebrand, H., & Merz, R. (2011). Catchment classification by runoff behavior with self-organizing maps (SOM). Hydrology and Earth System Sciences, 15(9), 2947-2962.
  24. Lin, G., & Chen, L. (2006). Identification of homogenous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324, 1-9.
  25. Lin, G., & Wang, C. (2006). Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources, 29, 1573-1585.
  26. Li, Y., & Hong, H. (2023). Modelling flood susceptibility based on deep learning coupling with ensemble learning models. Journal of Environmental Management325, 116450.
  27. Luu, C., Ha, H., Bui, Q. D., Luong, N. D., Khuc, D. T., Vu, H., & Nguyen, D. Q. (2023). Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling. Quaternary Science Advances11, 100083.
  28. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1 (14), 281-297.
  29. Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of hydrology590, 125275.
  30. Rao, R.A., & Srinivas, V.V. (2005). Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318, 37-56.
  31. Regier, E., Naughton, J., & McDonald, W. (2022). Transposing flood risk from extreme rainfall events: A case study of Hurricane Harvey. Journal of Flood Risk Management, 15(2), e12778.
  32. Rostami, R. (2003). Regional flood frequency analysis using linear moments (case study of Halil River basin and West Azerbaijan province basins). Master's Thesis, Faculty of Agriculture, Shahid Bahonrakerman University. (In Persian)
  33. Srinivas, V.V., Tripathi, S., Ramachandra Rao, A. and Govindaraju, R. S. 2007. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. Journal of Hydrology, (348), 148-166.
  34. Talukdar, S., Ghose, B., Shahfahad, Salam, R., Mahato, S., Pham, Q. B., ... & Avand, M. (2020). Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment34, 2277-2300.
  35. Towfiqul Islam, A.R., Talukdar, S., Mahato, S., Kundu, S., UddinEibek, K., ‌Bao Pham, Q.,‌ Kuriqi, A., Nguyen, & ThuyLinh, T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models, Geoscience Frontiers, 12(3), 101075.
  36. Tripathi, G., Pandey, A. C., & Parida, B. R. (2022). Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data. Sustainability, 14(3), 1472.
  37. Vesanto, J., Himberg, J., Alhoniemi, E., &nd Parhankangas, J. (2000). SOFM Toolbox for Matlab 5. Technical Report A57. Neural Networks Research Centre, Helsinki University of Technology, Helsinki, Finland.
  38. Vesanto, J., & Alhoniemi, R. (2000). Clustering of the self-organizing map, IEEE Neural, Netw, 11 (3), 586-600.
  39. Wilppu, R. (1997). The Visualisation Capability of Self Organizing Maps to Detect Deviation in Distribution Control. TUCS Technical Report No. 153, Turku Centre for Computer Science, Finland.
  40. Zarei, M., Zandi, R., & Naemitabar, M. (2022). Assessment of Flood Occurrence Potential using Data Mining Models of Support Vector Machine, Chaid and Random Forest (Case study: Frizi watershed). JWMR, 13 (25), 133-144. (In Persian)