بهبود عملکرد سامانه‌های توزیع آب کشاورزی در شبکه های آبیاری با رویکرد پیوند آب-غذا-انرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی منابع آب، گروه مهندسی آب، دانشکدگان ابوریحان، دانشگاه تهران، تهران، ایران.

2 دانشیار گروه مهندسی آب، دانشکدگان ابوریحان، دانشگاه تهران، تهران، ایران.

چکیده

بهبود کارایی سامانه‌های توزیع آب در بخش کشاورزی به منظور افزایش نسبی تولید محصولات زراعی با توجه به حجم آب سطحی و انرژی مصرفی، امری ضروری است. از اینرو هدف اصلی تحقیق حاضر، ارزیابی عملکرد گزینه‌های کاربردی در طرح‌های مدرن‌سازی به‌منظور بهبود عملکرد سامانه‌های توزیع آب سطحی در شبکه‌های آبیاری و انجام ارزیابی کمی عملکرد آنها مبتنی بر رویکرد پیوند آب-غذا-انرژی است. در این مطالعه، علاوه بر شبیه‌سازی وضعیت موجود توزیع آب در کانال اصلی شبکه آبیاری رودشت اصفهان تحت دو سناریوی بهره‌برداری نرمال و کم‌آبی؛ دو سامانه بهره‌برداری دستی بهبود‌یافته و روش کنترل خودکار پیش‌بین (MPC) توسعه داده شد و بهبود توزیع آب سطحی بررسی گردید. به منظور بررسی روش‌های بهره‌برداری، از هشت شاخص تحویل آب سطحی، انرژی مصرفی، بهره‌وری آب سطحی، بهره‌وری غذا، بهره‌وری انرژی، بهره‌وری اقتصادی آب سطحی، بهره‌وری اقتصادی انرژی و بهره‌وری اقتصادی غذا استفاده شد. در وضعیت موجود (روش بهره‌برداری دستی) تحت سناریو نرمال مقدار میانگین شاخص پیوند آب-غذا-انرژی برابر با 041 و در سناریو کم‌آبی برابر با 0.07 برآورد گردید. با ارتقا روش بهره‌برداری به دستی بهبود‌یافته نیز، مقدار میانگین شاخص پیوند آب-غذا-انرژی در سناریو نرمال برابر با 0.46 و در سناریو کم‌آبی برابر با 0.09 برآورد گردید. هم‌چنین نتایج MPC نشان داد که این روش در سناریو نرمال و کم‌آبی به ترتیب با مقدار میانگین 0.94 و 0.38 دارای بهترین عملکرد است. رویکرد ارزیابی پیشنهادی می‌تواند به عنوان یک ابزار مناسب برای ارزیابی و اولویت‌بندی گزینه‌های مدرن‌سازی سامانه‌های توزیع آب کشاورزی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving the Performance of Agricultural Water Distribution Systems in Irrigation Networks Using Water-Food-Energy Nexus

نویسندگان [English]

  • Fatemeh Bayat 1
  • Abbas Roozbahani 2
  • Mehdy Hashemy Shahdany 2
1 Ph.D. Student in Water Resources Engineering, Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran.
2 Associate Professor, Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran.
چکیده [English]

Improving the performance of water distribution systems in the agricultural sector is essential to increase arable crops production by considering surface water volume and energy consumption. Therefore, the main objective of the current research is to evaluate performance of practical alternatives in modernization projects in order to improve the performance of surface water distribution systems and to quantitatively evaluate their performance based on the water-food-energy nexus. The current operational management of the Rudasht Irrigation Network located in Isfahan, was simulated under normal and water shortage scenarios. Then the impact of two modernization methods including an improved manual operation and an automatic control system by using the Model Predictive Control (MPC) on the improvement of surface water distribution was investigated. In order to investigate the operational methods, eight indicators of surface water delivery, energy consumption, surface water productivity, food productivity, energy productivity, surface water economic productivity, energy economic productivity and food economic productivity were used. In the current status (Manual Method) under normal and water shortage scenarios, the values of water-food-energy nexus index were estimated 0.41 and 0.07, respectively. By improving the operational method to improved manual operation method, under normal and water shortage scenarios, the values of water-food-energy nexus index were estimated 0.46 and 0.09, respectively. The results of MPC method showed that this method has the best performance with 0.94 and 0.38 in normal and water shortage scenarios, respectively. The proposed evaluation approach can be used as an appropriate evaluation method to evaluate and prioritize modernization options of agricultural water distribution systems.

کلیدواژه‌ها [English]

  • Economic Productivity
  • Energy Productivity
  • Modernization
  • Rudasht Irrigation Network
  1. Al-Saidi, M., & Elagib, N. A. (2017). Towards understanding the integrative approach of the water, energy and food nexus. Science of the Total Environment, 574, 1131-1139.
  2. Bozorgi, A., Roozbahani, A., & Hashemy Shahdany, S. M. (2021). Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network. Water Resources Management, 35(10), 3139-3159.
  3. Daher, B. T., & Mohtar, R. H. (2015). Water–energy–food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making. Water International, 40(5-6), 748-771.
  4. El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science. 7(6), 2857-2868.
  5. Flammini, A., Puri, M., Pluschke, L., & Dubois, O. (2014). Walking the nexus talk: Assessing the water-energy-food nexus in the context of the sustainable energy for all initiative. Rome: FAO.
  6. Ghorbani, E., Monem, M. J., & Vaez Tehrani, M. (2020). Development of Water, Energy and Food Nexus Model in Irrigation Networks Based on Water Adequacy and Stability Indicators (Qazvin Irrigation Network Case Study). Irrigation and Drainage Structures Engineering Research, 21(80), 61-80. (In Persian)
  7. Hashemy, S.M., & Van Overloop, P.J. (2013). Applying decentralized water level differencecontrol for operation of the Dez main canal under water shortage. Journal of Irrigation and Drainage Engineering, 139 (12), 1037–1044.
  8. Hoff, H. (2011), Understanding the Nexus: Background paper for the Bonn 2011 Conference.
  9. Ji, L., Zhang, B., Huang, G., & Lu, Y. (2020). Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resources, Conservation and Recycling, 155, 1-13.
  10. Kaghazchi, A., Shahdany, S. M. H., & Roozbahani, A. (2021). Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model. Agricultural Water Management, 245, 106578.
  11. Kamrani, K., Roozbahani, A., & Shahdany, S. M. H. (2019). Effect of Improvement in Surface Water Delivery and Distribution Processes on Reduction of Groundwater Overexploitation in Rudasht Irrigation Network. Journal of Water Research in Agriculture (Soil and Water Sci.), 33(3), 446-461. (In Persian)
  12. Kamrani, K., Roozbahani, A., & Shahdany, S. M. H. (2020). Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus. Agricultural Water Management, 239, 1-12.
  13. Karnib, A. (2017). A quantitative assessment framework for water, energy and food nexus. Computational Water, Energy, and Environmental Engineering, 6(1), 12-23.
  14. Lawford, R., Bogardi, J., Marx, S., Jain, S., Wostl, C. P., Knüppe, K., ... & Meza, F. (2013). Basin perspectives on the water–energy–food security nexus. Current Opinion in Environmental Sustainability, 5(6), 607-616.
  15. Leck, H., Conway, D., Bradshaw, M., & Rees, J. (2015). Tracing the water–energy–food nexus: Description, theory and practice. Geography Compass, 9(8), 445-460.
  16. Mirzaei, A., Saghafian, B., Mirchi, A., & Madani, K. (2019). The groundwater‒energy‒food nexus in Iran’s agricultural sector: implications for water security. Water, 11(9), 1-15.
  17. Molden, D., & Gates, T. (1990). Performance Measures for Evaluation of Irrigation‐Water‐Delivery Systems. Journal of Irrigation and Drainage Engineering, 116, 804-823.
  18. Monem, M.J., & Delavar, M. Hosseini. (2020). Application and Evaluation of Water, Food and Energy (NEXUS) in Irrigation Networks Management:Case Study of Zayandehrud Irrigation Network. Iranian Journal of Irrigation and Drainage, 14(1), 275-285. (In Persian)
  19. Sadeghi, S. H., Moghadam, E. S., Delavar, M., & Zarghami, M. (2020). Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agricultural Water Management, 233, 1-13.
  20. Shahdany, S. H., Majd, E. A., Firoozfar, A., & Maestre, J. M. (2016). Improving operation of a main irrigation canal suffering from inflow fluctuation within a centralized model predictive control system: case study of Roodasht Canal, Iran. Journal of Irrigation and Drainage Engineering142(11), 05016007.
  21. Shahdany, S.H., & Firoozfar, A.R. (2017). Providing a reliable water level control in maincanals under significant inflowfluctuations at drought periods within canal auto-mation. Water resources management, 31(11), 3343–3354.
  22. Sharifi, H., Roozbahani, A., & Hashemy Shahdany, S. M. (2020). Development of ANN, FIS and ANFIS Models to Evaluate the Adequacy Index in Agricultural Water Distribution Systems (Case study: Rudasht Irrigation Network). ECOHIDROLOGY, 7(3), 635-646. (In Persian).
  23. Van Overloop, P. J. (2006). Model predictive control on open water systems (IOS Press).
  24. WEF (World Economic Forum). (2011). Water Security: The Water-Food-Energy-Climate Nexus. Island Press, Washington.
  25. Yaltaghian Khiabani, M., Hashemy Shahdany, S. M., Hassani, Y., & Maestre, J. M. (2021). Introducing an economic agricultural water distribution in a hyper-arid region: a case study in Iran. Journal of Hydroinformatics, 1-20.