ارزیابی استفاده از الگوهای تـنظیم سازه‌های یک بازه‌ِیِ کانال در سایر سازه‌های آن

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

کنترل سازه‌های موجود در کانال‌های آبیاری جهت تحویل و توزیع دقیق آب و جلوگیری از اتلاف آن، نیازمند استفاده از تکنیک‌های کنترلی مناسب است. اخیرا، یادگیری تقویی سارسا (Sarsa)، به عنوان یکی از شاخه‌های هوش مصنوعی، با هدف کنترل سازه‌ها و بهبود کفایت و راندمان تحویل و توزیع آب در کانالهای آبیاری استفاده شده است. جهت افزایش کارائی این الگوریتم و کاهش زمان لازم برای یادگیری الگوهای بهره‌برداری، در این تحقیق، با توسعه الگوریتم سارسا در کانال E1R1 از شبکه دز و تلفیق آن با مدل غیرخطی کانال، یادگیری یک بازه از کانال با روش سارسا انجام شد و الگوهای بهره‌برداری در سایر بازه‌ها با بکارگیری نتایج یادگیری استخراج و ارزیابی شد. یادگیری مدل مذکور با تعریف سناریوهای مختلف بهره‌برداری انجام شد و نتایج با استفاده از شاخص‌های استاندارد ارزیابی عملکرد، مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل ارائه شده با موفقیت قابل استفاده در کانال مذکور می‌باشد بطوری که در مرحله یادگیری، تغییرات عمق در محدوده مجاز 5 درصد و در مرحله استفاده از نتایج یادگیری، در محدوده مجاز 10 درصد قرار می‌گیرد. شاخص‌های کفایت و راندمان نیز نزدیک به مقدار مطلوب می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating utilization of structures' settings of one reach in the others

نویسنده [English]

  • Kazem Shahverdi
Irrigation Canals, Reinforcement Learning, Regulating Structures, Water Management.
چکیده [English]

Controlling structures in irrigation canals to accurately deliver and distribute the water, and to keep it needs the appropriate control techniques. Sarsa reinforcement learning, as a branch of artificial intelligence, has recently been used to control the structures and improve water delivery and distribution in irrigation canals. To improve Sarsa efficiency and reduce the required time of operational pattern learning, the Sarsa algorithm in the E1R1 canal was developed and linked to a non-linear model of the canal to learn the operational pattern of one reach of the canal and apply the results to the other reaches. Operational scenarios were defined in this regard, and standard performance indicators was used for assessment. The results showed that Sarsa can be used successfully with the proposed idea, maintaining water depth within a dead band of 5% in the learning step and that of 10% while utilizing the learning results. The efficiency and adequacy indicators were close to the desired value.

کلیدواژه‌ها [English]

  • Irrigation Canals
  • Reinforcement Learning
  • Regulating Structures
  • Water Management
  1. Arauz, T., Maestre, J. M., Tian, X., & Guan, G. (2020). Design of PI controllers for irrigation canals based on linear matrix inequalities. Water, 12(3), 855.
  2. Clemmens, A. J. (1987). Delivery system schedules and required capacities. , Planning, operation, rehabilitation and automation of irrigation water delivery systems, ASCE, 18-34.
  3. Clemmens, A. J., Kacerek, T. F., Grawitz, B., & Schuurmans, W. (1998). Test cases for canal control algorithms." Journal of Irrigation and Drainage Engineering, 124(1), 23-30.
  4. Durdu, Ö. F. (2010). Fuzzy logic adaptive Kalman filtering in the control of irrigation canals. International Journal for Numerical Methods in Fluids, 64(2), 187-208.
  5. Fatemeh, O., Hesam, G., & Shahverdi, K. (2020). Comparing Fuzzy SARSA Learning (FSL) and Ant Colony Optimization (ACO) Algorithms in Water Delivery Scheduling under Water Shortage Conditions. Irrigation and Drainage Engineering.
  6. Gopakumar, R., & Mujumdar, P. (2009). A fuzzy logic based dynamic wave model inversion algorithm for canal regulation. Hydrological processes, 23(12), 1739-1752.
  7. Hashemy, S., Monem, M., Maestre, J., & Van Overloop, P. (2013). Application of an In-Line Storage Strategy to Improve the Operational Performance of Main Irrigation Canals Using Model Predictive Control. Journal of Irrigation and Drainage Engineering, 139(8), 635-644.
  8. Hashemy, S., & Van Overloop, P. (2013). Applying decentralized water level difference control for operation of the Dez main canal under water shortage. Journal of irrigation and drainage engineering, 139(12), 1037-1044.
  9. Lord, S. A., Shahdany, S. M. H., & Roozbahani, A. (2021). Minimization of Operational and Seepage Losses in Agricultural Water Distribution Systems Using the Ant Colony Optimization. Water Resources Management, 35(3), 827-846.
  10. Manz, D. H., & Schaalje, M. (1992). Development and application of the irrigation conveyance system simulation model. , International Seminar on the Application of the Irrigation Mathematical Modeling for the Improvement of Irrigation Canal Operation.
  11. Molden, D. J., & Gates, T. K. (1990). Performance measures for evaluation of irrigation-water-delivery systems. Journal of Irrigation and Drainage Engineering, 116(6), 804-823.
  12. Monem, M. J., & Namdarian, R. (2005). Application of simulated annealing (SA) techniques for optimal water distribution in irrigation canals. Irrigation and Drainage, 54(4), 365-373.
  13. Savari, H., & Monem, M. J. (2021). Analysis and Classification of Arranged Delivery Methods in Irrigation Networks. Journal of water and irrigation management, 11(2), 145-158.
  14. Shahverdi, K., Monem, M. J., & Nili, M. (2016). Fuzzy SARSA learning of operational instructions to schedule water distribution and delivery. Irrigation and Drainage, 65(3), 276-284.
  15. Van Overloop, P.-J. (2006). Model predictive control on open water systems, IOS Press.
  16. Van Overloop, P., Maestre, J., Sadowska, A. D., Camacho, E. F., & De Schutter, B. (2015). Human-in-the-Loop Model Predictive Control of an Irrigation Canal [Applications of Control]. IEEE Control Systems Magazine, 35(4), 19-29.
  17. Wagemaker, R. (2005). Model Predictive Control on Irrigation Canals Application of various internal models, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Section of Operational Watermanagement.
  18. Wang, Z., Reddy, J. M., & Feyen, J. (1995). Improved 0-1 programming model for optimal flow scheduling in irrigation canals. Irrigation and Drainage Systems, 9(2), 105-116..