استفاده از رویکرد یادگیری عمیق به منظور تخمین سیل بر اساس الگوی بارش منطقه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه آزاد اسلامی، واحد رودهن، تهران، ایران.

2 دانشجوی دکتری، دانشگاه آزاد اسلامی، واحد رودهن، تهران، ایران.

چکیده

در سال‌های اخیر به دلیل بروز خشکسالی در کشور، مساله مدیریت منابع آب موجود از اهمیت فوق العاده ای برخوردار است و این توجه هرچه بیشتر به مدیریت مخازن وپیش بینی میزان حجم آب به منظور ارایه سیاست‌های مناسب بهره برداری می باشد. از طرف دیگر، بارش های فصلی و بیش از حد، تغییرات شگرفی در بسترسازی رودخانه ها و حوضه های آبریز ایجاد نمود که بررسی مدل های پیش بین را در شرایط وقوع باران های شدید، بیش از پیش مشخص می نماید که علاوه بر جلوگیری از خسارات ناشی از وقوع سیلاب، می توان از آب مازاد جاری شده نیز در جهت مطلوب استفاده نمود. ازاین رو عدم تدوین سیاست مناسب بهره برداری به خصوص در شرایط خشکسالی می‌تواندخسارت‌های زیادی را به بخش‌های مصرف کننده آب وارد کند. پیش بینی مناسب جریان های آب و میزان موجودی های مخزن منجر به استفاده از منحنی‌های فرمان برای استفاده بهینه از سدها و سیستم‌های مخزنی می شود. در این مقاله، با توجه به اهمیت موضوع، از یک مدل مبتنی بر یادگیری عمیق و آزمون تجربی مِن-کندال جهت تخمین میزان سیلاب در منطقه کَن-سولقان استفاده شد. نتایج نشان داد میزان اختلاف پیش بینی سیلاب منطقه به تفکیک ماهیانه برای شبکه عصبی کانولوشن برابر با 0.00654 و برای روش مِن-کندال، 0.19532 می باشد. همچنین میزان خطاهای MSE، RMSE، MAE و MPE برای شبکه عصبی به ترتیب برابر با 0.0019، 0.0439، 0.0239، و 0.0159 بدست آمد که نشان از دقت بالای این روش در تخمین میزان سیلاب منطقه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using a deep learning approach to estimate floods based on area precipitation pattern

نویسندگان [English]

  • Hasan Ahmadi 1
  • Hamidreza Rahimi 2
1 Assistant Professor, Islamic Azad University, Roudehen Branch, Tehran, Iran.
2 Ph. D. Candidate, Islamic Azad University, Roudehen Branch, Tehran, Iran.
چکیده [English]

In recent years, due to drought in the country, the issue of management of available water resources is extremely important, and this attention is increasingly to the management of reservoirs and forecasting the volume of water in order to provide appropriate exploitation policies. On the other hand, seasonal and excessive rainfall caused dramatic changes in the bedding of rivers and catchments, which examines the forecasting models in the event of heavy rains, which in addition to preventing damage in addition to preventing damage. Due to the occurrence of floods, surplus water can also be used in the desired direction. Therefore, not developing a proper operation policy, especially in drought conditions, can cause a lot of damage to water-consuming sectors. Proper forecasting of water flows and reservoir inventories leads to the use of control curves for the optimal use of dams and reservoir systems. In this paper, due to the importance of the subject, a model based on deep learning and Mann-Kendall experimental test was used to estimate the flood rate in the Kan-Sulqan area. The results showed that the monthly difference in flood forecast for the convolution neural network is 0.00654 and for the Men-Kendall method is 0.19532. Also, the error rates of MSE, RMSE, MAE and MPE for the neural network were equal to 0.0019, 0.0439, 0.0239, and 0.0159, respectively, which shows the high accuracy of this method in estimating the flood rate in the region.

کلیدواژه‌ها [English]

  • Deep Learning
  • Flood
  • Neural Network
  • Prediction
  • Runoff
  1. Dodangeh, E., Choubin, B., Eigdir, A. N., Nabipour, N., Panahi, M., Shamshirband, S., & Mosavi, A. (2020). Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Science of the Total Environment705, 135983.
  2. El-Haddad, B. A., Youssef, A. M., Pourghasemi, H. R., Pradhan, B., El-Shater, A. H., & El-Khashab, M. H. (2021). Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt. Natural Hazards105(1), 83-114.
  3. Ghaffari, Gh. A., & Vafakhahat, M. (2013).Simulation of rainfall-runoff process using artificial neural network and fuzzy-adaptive neural system (Case study: Haji Ghoshan watershed).Watershed Management Research Journal, 8, 120-136. [In Persian]
  4. Kashani, M. H., Ghorbani, M. A., Dinpashoh, Y., & Shahmorad, S. (2016). Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran. Journal of Hydrology, 540, 340-354.
  5. Kan, G., Li, J., Zhang, X., Ding, L., He, X., Liang, K., ... & Zhang, Z. (2018). A new hybrid data-driven model for event-based rainfall–runoff simulation. Neural Computing and Applications, 28(9), 2519-2534.
  6. Kim, H. I., & Han, K. Y. (2020). Linking Hydraulic Modeling with a Machine Learning Approach for Extreme Flood Prediction and Response. Atmosphere11(9), 987.
  7. Liu, L., & Xu, Z. X. (2016). Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China. Natural Hazards, 80(2), 1195-1211.
  8. Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536.
  9. Mu, D., Luo, P., Lyu, J., Zhou, M., Huo, A., Duan, W., ... & Zhao, X. (2020). Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. Journal of Flood Risk Management, e12668, 280, 458-496.
  10. Parisa, Normand, Behreza. (2016) Rainfall-runoff model of Sufi Chay catchment using artificial neural networks. National Conference on Technology and Engineering in Civil Engineering, Architecture, Electrical and Mechanical Engineering. [In Persian].
  11. Rahman, M. A., Yunsheng, L., & Sultana, N. (2017). Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 129(4), 409-424.
  12. Sedighi, F., Vafakhah, M., & Javadi, M. R. (2016). Rainfall–runoff modeling using support vector machine in snow-affected watershed. Arabian Journal for Science and Engineering, 41(10), 4065-4076.
  13. Sankaranarayanan, S., Prabhakar, M., Satish, S., Jain, P., Ramprasad, A., & Krishnan, A. (2020). Flood prediction based on weather parameters using deep learning. Journal of Water and Climate Change11(4), 1766-1783.
  14. Wu, Z., Zhou, Y., Wang, H., & Jiang, Z. (2020). Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of The Total Environment, 716, 137077.
  15. Wu, Z., Zhou, Y., Wang, H., & Jiang, Z. (2020). Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of The Total Environment, 716, 137077.
  16. Zhu, Y., Feng, J., Yan, L., Guo, T., & Li, X. (2020). Flood Prediction Using Rainfall-Flow Pattern in Data-Sparse Watersheds. IEEE Access, 8, 39713-39724.