Bai, T., Jiang, Z., & Tahmasebi, P. (2021). Debris flow prediction with machine learning: smart management of urban systems and infrastructures. Neural Computing and Applications, 33,15769–15779.
Banihabib, M. E., & Masumi, A., (1999). Effect of High-Concentrated Sediment Transport on Inundation of Rivers: Case Study Masuleh Flood. In: Proceeding of 2nd Iranian Hydraulic Conference, Iranian Hydraulic Association, Tehran, Iran.
Banihabib, M. E. (2003). Mud and Debris Floods, In: Proceeding of Flash Flood Prevention & Mitigation, Gorgon, Iran.
Banihabib, M. E., & Forghani, A. (2017). An assessment framework for the mitigation effects of check dams on debris flow. Catena, 152, 277-284.
Banihabib, M. E., & Elahi, M. (2009). Empirical Equation for Abrasion of Stilling Basin Caused by Impact of Sediment. In: Proceeding of World Environmental and Water Resources Congress: Great Rivers © 2009 ASCE, Kansas City, USA, 1-10.
Banihabib, M. E., & Tanhapour, M. (2020). An empirical equation to determine the threshold for rainfall-induced landslides developing to debris flows. Landslides, 17, 2055-2065.
Banihabib, M. E., Jurik, L., Kazemi, M. S., Soltani, J., & Tanhapour, M. (2020). A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods. Water, 12(8), 2246.
Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler: Series A, Physical Geography, 62(1-2), 23-27.
Cama, M., Lombardo, L., Conoscenti, C., Agnesi, V., & Rotigliano, E. (2015). Predicting storm-triggered debris flow events: application to the 2009 Ionian Peloritan disaster (Sicily, Italy). Natural Hazards and Earth System Sciences, 15(8), 1785-1806.
Cannon, S. H., Boldt, E. M., Laber, J. L., Kean, J. W., & Staley, D. M. (2011). Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning. Natural Hazards, 59(1), 209-236.
Cannon, S. H., Gartner, J. E., Rupert, M. G., Michael, J. A., Rea, A. H., & Parrett, C. (2010). Predicting the probability and volume of post-wildfire debris flows in the intermountain western United States. Bulletin, 122(1-2), 127-144.
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., & Laber, J. L. (2008). Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology, 96(3-4), 250-269.
Chang, M., Dou, X., Hales, T. C., & Yu, B. (2021). Patterns of rainfall-threshold for debris-flow occurrence in the Wenchuan seismic region, Southwest China. Bulletin of Engineering Geology and the Environment, 80(3), 2117-2130.
Chang, T.C., Wang, Z.Y., & Chien, Y.H. (2010). Hazard assessment model for debris flow prediction. Environmental Earth Sciences, 60(8), 1619-1630.
Chen, N. S., Yang, C. L., Zhou, W., Wei, F. Q., Li, Z. L., Han, D., & Hu, G. S. (2011). A new total volume model of debris flows with intermittent surges: based on the observations at Jiangjia Valley, southwest China. Natural Hazards, 56(1), 37-57.
Chen, X. Q., Cui, P., Feng, Z. L., Chen, J., & Li, Y. (2006). Artificial rainfall experimental study on landslide translation to debris flow. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 25(1), 106-116.
Guo, X., Cui, P., Li, Y., Ma, L., Ge, Y., & Mahoney, W. B. (2016). Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China. Geomorphology, 253, 208-216.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5(1), 3-17.
Hassan-Esfahani, L., & Banihabib, M. E. (2016). The impact of slit and detention dams on debris flow control using GSTARS 3.0. Environmental Earth Sciences, 75(4), 328.
Hirano, M., Moriyama, T., & Kawahara, K. (1995). Prediction of the occurrence of debris flow and a runoff analysis by the use of neural networks. Journal of Natural Disaster Science, 17(2), 53-63.
Hirano, M., & Moriyama, T. (1993). Prediction of occurrence and runoff analysis of debris flow. In Hydraulic Engineering, ASCE, 1780-1785.
Huang, J., Hales, T. C., Huang, R., Ju, N., Li, Q., & Huang, Y. (2020). A hybrid machine-learning model to estimate potential debris-flow volumes. Geomorphology, 367, 107333.
Lay, U. S., & Pradhan, B. (2017). Identification of debris flow initiation zones using topographic model and airborne laser scanning data. In: Proceeding of Global Civil Engineering Conference. Springer, Singapore, 915-940.
Liu, X., Wang, F., Nawnit, K., Lv, X., & Wang, S. (2020). Experimental study on debris flow initiation. Bulletin of Engineering Geology and the Environment, 79(3), 1565-1580.
Ni H-Y (2015) Experimental study on initiation of gully-type debris flow based on artificial rainfall and channel runoff. Environmental Earth Science, 73, 6213-6227.
Nikolopoulos, E. I., Borga, M., Creutin, J. D., & Marra, F. (2015). Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods. Geomorphology, 243, 40-50.
Nikolopoulos, E. I., Destro, E., Maggioni, V., Marra, F., & Borga, M. (2017). Satellite rainfall estimates for debris flow prediction: an evaluation based on rainfall accumulation–duration thresholds. Journal of Hydrometeorology, 18(8), 2207-2214.
Nikolopoulos, E.I., Destro, E., Bhuiyan, M.A.E., Borga, M., & Anagnostou, E.N. (2018). Evaluation of predictive models for post-fire debris flow occurrence in the western United States. Natural Hazards and Earth System Sciences, 18(9), 2331-2343.
Pan, H. L., Jiang, Y. J., Wang, J., & Ou, G. Q. (2018). Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Natural Hazards and Earth System Sciences, 18(5), 1395-1409.
Papa, M. N., Medina, V., Ciervo, F., & Bateman, A. (2012). Estimation of debris flow critical rainfall thresholds by a physically-based model. Hydrology & Earth System Sciences Discussions, 9(11), 12797-12824.
Rupert, M., Cannon, S. H., Gartner, J. E., Michael, J. A., & Helsel, D. R. (2008). Using logistic regression to predict the probability of debris flows in areas burned by wildfires, southern California, 2003-2006. Washington, DC: US Geological Survey.
Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K. M., & Laber, J. L. (2013). Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides, 10(5), 547-562.
Tang, C., & Zhang, S. (2008). Study progress and expectation for initiation mechanism and prediction of hydraulic-driven debris flows. Advances in Earth Science, 23(8), 787-793.
Tang, W., Ding, H. T., Chen, N. S., Ma, S. C., Liu, L. H., Wu, K. L., & Tian, S. F. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18(1), 51-67.
Tang, W., Ding, H. T., Chen, N. S., Ma, S. C., Liu, L. H., Wu, K. L., & Tian, S. F. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18(1), 51-67.
Tanhapour, M., & Banihabib, M. (2019). Determination of the rainfall threshold for debris flow occurrence in a part of Alborz mountainous basins. Watershed Engineering and Management, 11(3), 575-588. (In Persian)
Wieczorek, G. F., & Guzzetti, F. 1999. A review of rainfall thresholds for triggering landslides. In: Proceeding of the EGS Plinius Conference, Maratea, Italy, 407-414.
Zhang, S. J., Xu, C. X., Wei, F. Q., Hu, K. H., Xu, H., Zhao, L. Q., & Zhang, G. P. (2020). A physics-based model to derive rainfall intensity-duration threshold for debris flow. Geomorphology, 351, 106930.
Zhenghong, C., & Bin, M. (1995). Spatial and Temporal Distribution of Rain-caused Slopeslides and Debris Flows in Hubei Province and Correlative Analysis of Rainfall Factors [J]. Rock and Soil Mechanics, 3.
Zhuang, J., Cui, P., Wang, G., Chen, X., Iqbal, J., & Guo, X. (2015). Rainfall thresholds for the occurrence of debris flows in the Jiangjia Gully, Yunnan Province, China. Engineering Geology, 195, 335-346.