چرا مدیریت منابع انسانی-اکولوژیکی کشور با چالش مواجه شده است؟ مطالعه موردی متابولیسم جامعه حوضه آبریز ارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختة کارشناسی ارشد، گروه مهندسی محیط زیست، دانشکده عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

2 استادیار، گروه مهندسی محیط زیست، دانشکده عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

در پازل توسعه پایدار کشور نقش مهم ساعات فعالیت انسانی به‌ویژه در بخش کشاورزی و اهمیت آن در توسعه پایدار نادیده گرفته شده است. در این مقاله، با استفاده از روش MuSIASEM شرایط اجتماعی، اقتصادی و محیط‌زیستی حوضه رودخانه ارس طی سال‌های 1385 تا 1395 موردبررسی قرار گرفته‌است. شاخص‌های شدتی MuSIASEM برای کل حوضه، بخش کار و بخش خانگی به‌ترتیب 34، 108 و 83 درصد  برای مصرف آب و 21، 4 و 80 درصد برای مصرف انرژی در طول 10 سال افزایش یافته‌اند. این افزایش فشار مصرف منابع طبیعی در حالی رخ داده است که داده‌های جمعیتی نشان از تنها 3 درصد رشد برای کل حوضه می‌دهند. با بسط تحلیل متابولیسم جامعه به درجات پایین‌تر، مشخص شد که در سه بخش اصلی اقتصاد یعنی کشاورزی، صنعت و خدمات نه‌تنها ساعات فعالیت انسانی به‌ترتیب 28، 36 و 29 درصد کاهش پیدا کرده‌اند، بلکه شدت مصرف انرژی آن‌ها به‌ترتیب 64، 84 و 123 درصد و شدت مصرف آب کشاورزی و صنعت 74  و 105 درصد افزایش داشته‌اند. در تحلیل هم‌زمانی سال 1385، شاخص‌های اکولوژیکی- اقتصادی برای محصولات کشاورزی اصلی حوضه تهیه و مشخص شد. محصولی مانند عدس آبیاری چیزی در حدود هفت برابر آب، نُه برابر زمین، 11 برابر گاز گلخانه، شش برابر انرژی بیش‌تر نسبت به میانگین سه نوع میوه نیاز دارد تا یک تن بار دهد. در نتیجه با استفاده از این روش می‌توان شاخص‌های تلفیقی جامع‌تری برای تحلیل کمی مسیر پیشرفت اقتصادی- محیط زیستی جامعه، و تصویری دقیق‌تری از درهم‌تنیدگی توسعه پایدار به‌ویژه در بخش کشاورزی کشور ارائه کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

How Iran's socio-ecological management can not sustain? Case study of Aras river basin

نویسندگان [English]

  • Alireza Taghdisian 1
  • Ali Moridi 2
1 M. Sc. Graduate, Department of Civil-Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Assistant Professor, Department of Civil-Environmental Engineering, Faculty of Civil Engineering, Water and Environment, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

In Iran’s sustainability puzzle, the role of human time activities, specifically in agriculture, has long been overlooked. For this reason, we applied the MuSIASEM analytical tool on Aras river basin, as a case study, in order to analyze its socio-ecological development during 2006-2016. Our results show that the biophysical pressure both on water and energy pillars. Energy metabolic rate (EMR) and Water metabolic rate (WMR) both were shifted 34%, and 21% during the decade of analysis. The household and paid work sectors both have experienced an increase of 83% and 108% in their EMR and WMR, respectively. For assessing the underlying socio-economic factor, we continued the analysis into the lower level compartments of the societal hierarchy. In agriculture, industry and service sectors, while there was a reduction of 28%, 36% and 29% in human time investments, EMR and WMR were increased by 64%, 84 and 123 for energy, and 74% and 105% for water. We conclude the result with generating composite indicators in agriculture based on the concept of metabolic processor. This shows that a crop like irrigated legume consumed 7 times more water, 9 times more land, 6 times more energy compared to fruits in one ton of their output. Also, legumes brought 37% more net added value with 5 times human time investment compared to fruits.

کلیدواژه‌ها [English]

  • Economic-Ecological Indicators
  • Interdisciplinary Analysis
  • MuSIASEM
  • Sustainable Development
  • Urban Metabolism
  1. Giampietro, M., Mayumi, K., & Ramos-Martin, J. (2009). Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy, 34(3), 313-322., https://doi.org/10.1016/j.energy.2008.07.020
  2. Hopwood, B., Mellor, M., & O'Brien, G. (2005). Sustainable development: mapping different approaches. Sustainable Development, 13(1), 38-52., 38-52, https://doi.org/10.1002/sd.244
  3. Redclift, M. (2005). Sustainable development (1987–2005): an oxymoron comes of age. Sustainable Development, 13(4), 212-227, https://doi.org/10.1002/sd.281
  4. (2020). World energy balance, https://www.iea.org/data-and statistics?country=WORLD&fuel=Energy%20supply&indicator=TPESbySource
  5. World Bank (2017), Renewable internal freshwater resources per capita (cubic meters), https://data.worldbank.org/indicator/ER.H2O.INTR.PC?end=2017&start=1962&type=shaded&view=chart
  6. Moridi, A. (2017). State of water resources in Iran. Int J Hydro, 1(4), 11-114. DOI: 10.15406/ijh.2017.01.00021
  7. Crutzen, P. J. (2016). Geology of mankind. In Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene (pp. 211-215). Springer, Cham. https://doi.org/10.1038/415023a
  8. Dijst, M., Worrell, E., Böcker, L., Brunner, P., Davoudi, S., Geertman, S., ... & Zeyringer, M. (2018). Exploring urban metabolism-Towards an interdisciplinary perspective. https://doi.org/10.1016/j.resconrec.2017.09.014
  9. Serrano-Tovar, T., Suárez, B. P., Musicki, A., Juan, A., Cabello, V., & Giampietro, M. (2019). Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Science of the Total Environment, 689, 945-957. https://doi.org/10.1016/j.scitotenv.2019.06.422
  10. Parra, R., Bukkens, S. G., & Giampietro, M. (2020). Exploration of the environmental implications of ageing conventional oil reserves with relational analysis. Science of the Total Environment, 749, 142371. https://doi.org/10.1016/j.scitotenv.2020.142371
  11. Ramos-Martín, J., Cañellas-Boltà, S., Giampietro, M., & Gamboa, G. (2009). Catalonia's energy metabolism: Using the MuSIASEM approach at different scales. Energy Policy, 37(11), 4658-4671. https://doi.org/10.1016/j.enpol.2009.06.028
  12. Renner, A., Cadillo-Benalcazar, J. J., Benini, L., & Giampietro, M. (2020). Environmental pressure of the European agricultural system: Anticipating the biophysical consequences of internalization. Ecosystem Services, 46, 101195. https://doi.org/10.1016/j.ecoser.2020.101195
  13. Cf, O. D. D. S. (2015). Transforming our world: the 2030 Agenda for Sustainable Development.
  14. United Nation (2015). Paris agreement. In Paris: Conference of the Parties to the United Nations Framework Convention on Climate Change.
  15. Pérez-Sánchez, L., Giampietro, M., Velasco-Fernández, R., & Ripa, M. (2019). Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona. Energy Policy, 124, 13-22. https://doi.org/10.1016/j.enpol.2018.09.028
  16. Giampietro M, Cadillo Benalcazar JJ, Di Felice LJ, Manfroni M, Pérez Sánchez L, Renner A, Ripa M, Velasco Fernández R & Bukkens SGF (2021), Report on the Experience of Applications of the Nexus Structuring Space in Quantitative Storytelling, MAGIC (H2020–GA 689669) Project Deliverable 4.4,  Revision (version 2.0). First published 30 August 2020, revised 25 January 2021.
  17. Fallahpour, F., Aminghafouri, A., Behbahani, A. G., & Bannayan, M. (2012). The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability, 14(6), 979-992. https://doi.org/10.1007/s10668-012-9367-3
  18. Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., & Movahedi, M. (2013). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333-338. https://doi.org/10.1016/j.energy.2013.01.028
  19. Houshyar, E. (2017). Environmental impacts of irrigated and rain-fed barley production in Iran using life cycle assessment (LCA). Spanish Journal of Agricultural Research, 15(2), 6.
  20. Asgharipour, M. R., Mousavinik, S. M., & Enayat, F. F. (2016). Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports, 2, 135-140. https://doi.org/10.1016/j.egyr.2016.05.007
  21. Ghaderpour, O., Rafiee, S., Sharifi, M., & Mousavi-Avval, S. H. (2018). Quantifying the environmental impacts of alfalfa production in different farming systems. Sustainable Energy Technologies and Assessments, 27, 109-118. https://doi.org/10.1016/j.seta.2018.04.002
  22. Soheili-Fard, F., & Kouchaki-Penchah, H. (2015). Assessing environmental burdens of sugar beet production in East Azerbaijan province of IR Iran based on farms size levels. International Journal of Farming and Allied Sciences, 4(5), 489-495.
  23. Elhami, B., Khanali, M., & Akram, A. (2017). Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran. Information Processing in Agriculture, 4(1), 18-32. https://doi.org/10.1016/j.inpa.2016.10.004
  24. Taghavifar, H., & Mardani, A. (2015). Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network. Journal of Cleaner Production, 87, 159-167. https://doi.org/10.1016/j.jclepro.2014.10.054
  25. Mohseni, P., Borgheei, A. M., & Khanali, M. (2019). Energy Consumption analysis and environmental impact assessment of grape production in Hazavah region of Arak city. Journal of Agricultural Machinery, 9(1), 177-193. https://doi.org/10.22067/JAM.V9I1.67645