ارزیابی مدل SWAP در برآورد رطوبت، شوری خاک و عملکرد سه رقم ذرت علوفه‌ای در شرایط استفاده از آب شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا آبیاری و زهکشی، گروه آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 دانش‌آموخته کارشناسی ارشد، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج،

چکیده

به منظور ارزیابی مدل SWAP پژوهشی در سال 1396 در مزرعه گروه مهندسی آبیاری و آبادانی دانشگاه تهران، واقع در کرج به صورت آزمایش فاکتوریل و در قالب طرح بلوک‌های کامل تصادفی انجام گرفت. تیمارهای آزمایشی شامل سه هیبرید ذرت، سینگل-کراس‌های 704، 400 و 260 (به ترتیب V1، V2 و V3) و سه سطح شوری آب آبیاری 7/0، 3 و 5 دسی‌زیمنس بر متر (به ترتیب S1، S2 و S3) بودند. در هر رقم ذرت برای واسنجی مدل از داده‌های عملکرد محصول اندازه‌گیری شده در مزرعه در سطح شوری آب آبیاری 3 دسی‌زیمنس بر متر (S2) و برای صحت‌سنجی آن از سطوح شوری آب آبیاری 7/0 و 5 دسی‌زیمنس بر متر (S2 و S3) استفاده شد. همچنین برای ارزیابی مدل در برآورد رطوبت و شوری خاک، از داده‌های مزرعه‌ای تیمارهای V1S2 (واسنجی) و V1S3 (صحت‌سنجی) استفاده شد. بر اساس نتایج به دست آمده، مدل SWAP عملکرد خوبی در برآورد رطوبت خاک داشته به طوری که در مرحله صحت‌سنجی در سه لایه خاک (20-0، 40-20 و 60-40 سانتی‌متری) به ترتیب دارای RMSE (ریشه میانگین مربعات خطا) 03/0، 03/0 و 04/0 cm cm-3 است و در پیش‌بینی شوری خاک لایه سطحی 20-0 سانتی‌متری دقت خوبی (RMSE برابر 67/0 mg cm-3) دارد اما با افزایش عمق خاک دقت مدل کاهش پیدا می‌کند به طوری که RMSE به ترتیب در دو لایه 40-20 و 60-40 سانتی-متری 16/1 و 19/1 mg cm-3 به دست آمد. مدل اختلاف ذاتی بین ارقام مختلف گیاه ذرت را به خوبی تشخیص داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of SWAP model in estimating soil water content, salinity and yield of three forage maize cultivars under saline water use conditions

نویسندگان [English]

  • Morteza Khoshsimaie chenar 1
  • Hamideh Noory 2
  • Zhila Mahmoudi molamahmoud 3
1 PhD student in Irrigation and Drainage, Department of Irrigation and Reclamation Engineering, faculty of Agricultural Engineering & Technology, university of Tehran, Karaj, Iran.
2 Associate Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, Collage of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 M.Sc. Graduated, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, Collage of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

In order to evaluate the SWAP model a study was conducted in 2017 in the farm of the Department of Irrigation and Reclamation Engineering, University of Tehran, located in Karaj as a factorial experiment in a randomized complete block design. The treatments consisted of three maize hybrids SC-704, SC-400 and SC-260 (V1, V2 and V3, respectively) and three levels of irrigation water salinity 0.7, 3 and 5 dS m-1 (S1, S2 and S3, respectively). In each maize cultivar, for the model calibration, the crop yield data measured in the field from the salinity level of irrigation water 3 dS m-1 and for its validation, the salinity levels of 0.7 and 5 dS m-1 were used. Also, to evaluate the model in estimating soil moisture and salinity, field data of V1S2 (calibration) and V1S3 (validation) were used. Based on the obtained results, SWAP model has a good performance in estimating soil moisture so that in the validation stage in three soil layers (0-20, 20-40 and 40-60 cm) with RMSE (Root Mean Square Error) of 0.03, 0.03 and 0.04 cm cm-3 respectively and has a good accuracy in predicting soil salinity of 0-20 cm surface layer (RMSE = 0.67 mg cm-3) but with increasing soil depth, the accuracy of the model decreases so that RMSE of 1.16 and 1.19 mg cm-3 were obtained in two layers of 20-40 and 40-60 cm, respectively. The SWAP model detected the inherent differences between different cultivars of maize and the best simulation results were obtained for SC 704.

کلیدواژه‌ها [English]

  • Crop growth modeling
  • Drip irrigation
  • Maize cultivars
  • SWAP model
Amiri, E. (2017). Evaluation of water schemes for maize under arid area in Iran using the SWAP Model. Communications in Soil Science and Plant Analysis48(16), 1963-1976.
Ben-Asher, J., Van Dam, J., Feddes, R. A., & Jhorar, R. K. (2006). Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield. Agricultural Water Management83(1-2), 22-29.
Boogaard, H. L., Van Diepen, C. A., Rotter, R. P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Chen, M., Kang, Y., Wan, S., & Liu, S. P. (2009). Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agricultural Water Management96(12), 1766-1772.
Chen, S., Mao, X., Barry, D. A., & Yang, J. (2019). Model of crop growth, water flow, and solute transport in layered soil. Agricultural Water Management221, 160-174.
Díaz, F. J., Grattan, S. R., Reyes, J. A., de la Roza-Delgado, B., Benes, S. E., Jiménez, C., ... & Tejedor, M. (2018). Using saline soil and marginal quality water to produce alfalfa in arid climates. Agricultural Water Management199, 11-21.
Feizi, M., Hajabbasi, M. A., & Mostafazadeh-Fard, B. (2010). Saline Irrigation Water Management Strategies for Better Yield of Safflower ('Carthamus tinctorius' L.) in An Arid Region. Australian Journal of Crop Science4(6), 408.
Feng, G., Zhang, Z., Wan, C., Lu, P., & Bakour, A. (2017). Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management193, 205-213.
Hamada, K., Inoue, H., Mochizuki, H., Asakura, M., Shimizu, Y., & Takemura, T. (2020). Evaluating Maize Drought and Wet Stress in a Converted Japanese Paddy Field Using a SWAP Model. Water12(5), 1363.
Hassanli, M. (2013). Management of using saline water in drip irrigation to increase water use efficiency and lands sustainability. MSc thesis, Department of Irrigation and Reclamation Engineering, collage of Agriculture and Natural Resources, University of Tehran, 86 pages. (In Persian).
Huang, C. H., Xue, X., Wang, T., De Mascellis, R., Mele, G., You, Q. G., ... & Tedeschi, A. (2011). Effects of saline water irrigation on soil properties in northwest China. Environmental Earth Sciences63(4), 701-708.
Jiang, J., Feng, S., Huo, Z., Zhao, Z., & Jia, B. (2011). Application of the swap model to simulate water–salt transport under deficit irrigation with saline water. Mathematical and Computer Modelling54(3-4), 902-911.
Jiang, J., Feng, S., Ma, J., Huo, Z., & Zhang, C. (2016). Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Research196, 85-97.
Jiang, J., Huo, Z., Feng, S., & Zhang, C. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research137, 78-88.
Kamyab-Talesh, F., Mostafazadeh-Fard, B., Vazifedoust, M., Shayannejad, M., & Navabian, M. (2017). Salt Tolerance Analysis of Crops Using the SWAP Model. Biosciences Biotechnology Research Asia14(2), 643-649.
Khoshsimaie chenar, M. & Noory, H. (2021). Effect of Irrigation Water Salinity on Soil Salinity and Yield of Three Maize Hybrids in Drip Irrigation System. In: The first national conference on irrigation deficiency and the use of unconventional water in agriculture in dry areas, 17 February, Ferdowsi University of Mashhad, Iran, 57-70. (In Persian).
Kroes, J.G., J.C. van Dam, R.P. Bartholomeus, P. Groenendijk, M. Heinen, R.F.A. Hendriks, H.M. Mulder, I. Supit, P.E.V & van Walsum. (2017). SWAP version 4; Theory description and user manual. Wageningen, Wageningen Environmental Research, Report 2780.
Kumar, P., Sarangi, A., Singh, D. K., Parihar, S. S., & Sahoo, R. N. (2015). Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management148, 72-83.
Li, P., & Ren, L. (2019). Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. Journal of Hydrology574, 497-516.
Li, X., Kang, Y., Wan, S., Chen, X., & Xu, J. (2015). Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial. Scientia Horticulturae186, 163-171.
Ma, Y., Feng, S., & Song, X. (2015). Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Computers and Electronics in Agriculture116, 125-136.
Malash, N. M., Ali, F. A., Fatahalla, M. A., A Khatab, E., Hatem, M. K., & Tawfic, S. (2012). Response of tomato to irrigation with saline water applied by different irrigation methods and water management stratigies. International Journal of Plant Production2(2), 101-116.
Minhas, P. S., Ramos, T. B., Ben-Gal, A., & Pereira, L. S. (2020). Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management227, 105832.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Mostafazadeh-Fard, B., Mansouri, H., Mousavi, S. F., & Feizi, M. (2009). Effects of different levels of irrigation water salinity and leaching on yield and yield components of wheat in an arid region. Journal of Irrigation and Drainage Engineering135(1), 32-38.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research12(3), 513-522.
Pan, Y., Yuan, C., & Jing, S. (2020). Simulation and optimization of irrigation schedule for summer maize based on SWAP model in saline region. International Journal of Agricultural and Biological Engineering13(3), 117-122.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., ... & Noble, A. D. (2014). Economics of salt‐induced land degradation and restoration. In Natural Resources Forum 38, 282-295.
Rameshwaran, P., Tepe, A., Yazar, A., & Ragab, R. (2016). Effects of drip-irrigation regimes with saline water on pepper productivity and soil salinity under greenhouse conditions. Scientia Horticulturae199, 114-123.
Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production-FAO irrigation and drainage paper 48. FAO, Rome133.
Singh, A., & Panda, S. N. (2012). Effect of saline irrigation water on mustard (Brassica Juncea) crop yield and soil salinity in a semi-arid area of North India. Experimental Agriculture48(1), 99-110.
Soltani, M., Kerachian, R., Nikoo, M. R., & Noory, H. (2018). Planning for agricultural return flow allocation: application of info-gap decision theory and a nonlinear CVaR-based optimization model. Environmental Science and Pollution Research25(25), 25115-25129.
Stahn, P., Busch, S., Salzmann, T., Eichler-Löbermann, B., & Miegel, K. (2017). Combining global sensitivity analysis and multiobjective optimisation to estimate soil hydraulic properties and representations of various sole and mixed crops for the agro-hydrological SWAP model. Environmental Earth Sciences76(10), 367.
Van Diepen, C. V., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil Use and Management5(1), 16-24.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal44(5), 892-898.
Van Genuchten, M. V., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils, Version 1.0. EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside, California.
Vazifedoust, M., Van Dam, J. C., Feddes, R. A., & Feizi, M. (2008). Increasing water productivity of irrigated crops under limited water supply at field scale. Agricultural Water Management95(2), 89-102.
Verma, A. K., Gupta, S. K., & Isaac, R. K. (2010). Long-term use of saline drainage waters for irrigation in subsurface drained lands: simulation modelling with SWAP. Journal of Agricultural Engineering47(3), 15-23.
Verma, A. K., Gupta, S. K., & Isaac, R. K. (2012). Use of saline water for irrigation in monsoon climate and deep-water table regions: simulation modeling with SWAP. Agricultural Water Management115, 186-193.
Wang, X., Yang, J., Liu, G., Yao, R., & Yu, S. (2015). Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agricultural Water Management149, 44-54.
Xu, X., Huang, G., Sun, C., Pereira, L. S., Ramos, T. B., Huang, Q., & Hao, Y. (2013). Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agricultural Water Management125, 46-60.
Yuan, C., Feng, S., Huo, Z., & Ji, Q. (2019). Simulation of saline water irrigation for seed maize in arid northwest China based on SWAP model. Sustainability11(16), 4264.
Zeyliger, A. M., Ermolaeva, O. S., Muzylev, E. L., Startseva, Z. P., & Sukharev, Y. I. (2019). Computer analysis of water stress regimes of an irrigated agrocoenosis using the SWAP model and ground and space monitoring data. Computer16(3), 33-43.
Zhao, Y., Mao, X., & Shukla, M. K. (2020). A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching. Agricultural and Forest Meteorology292, 108127.