بررسی عدم قطعیت داده‌های بارش TRMM در مدل سازی تراز آب زیرزمینی دشت رفسنجان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران- مدیریت منابع آب، دانشکده مهندسی عمران، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار دانشکده مهندسی عمران، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

اطلاعات بارش نقش مهمی در محاسبه تغذیه آبخوان‌ها با استفاده از مدل‌های ریاضی بر عهده دارد. در سالهای اخیر با در دسترس قرار گرفتن داده‌های بارش ماهواره‌ای، بخصوص ماهواره‌های TRMM و GPM، روش‌های جدید و نوآورانه‌ای برای غلبه عدم دسترسی به داده‌های بارش ابداع شده است. با این وجود، موانعی نظیر عدم قطعیت داده‌ها، این روشها را با محدودیتهایی نیز مواجه کرده است. در این مطالعه، پس از برطرف نمودن خطای داده‌های ماهواره‌ای، از این اطلاعات بعنوان پارامتر تغذیه به کدMODFLOW، استفاده شد و عدم قطعیت تراز آب زیرزمینی توسط توابع مختلف کاپولا محاسبه گردید. بررسی خروجی های مدل آب زیرزمینی نشان دهنده‌ی کاهش 50 درصدی شاخص خطای جذر میانگین مربعات خطا(RMSE) بود. شایان ذکر است که حدود 90 درصد از سطح آبخوان دارای اختلاف تراز کمتر از 10 درصد، نزدیک به 8 درصد دارای اختلاف 20 تا 30 درصد ای و حدود 2 درصد آبخوان دارای اختلاف تقریبی 80 درصدی نسبت داده‌های مشاهداتی را نشان می داد. نتایج مذکور نشان دهنده عملکرد مناسب و با ضریب اطمینان بالای 90 درصد توابع کاپولا در محاسبه عدم قطعیت تراز آب زیر زمینی با استفاده از داده‌های بارش ماهواره‌ای بعنوان پارامتر تغذیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of TRMM precipitation data uncertainty in groundwater level modeling of Rafsanjan plain

نویسندگان [English]

  • Saman Seyf 1
  • Ahmad Sharafati 2
1 M.Sc. Student, Faculty of Civil Engineering, Department of Construction and Water Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Asisstant Professor, Faculty of Civil Engineering, Department of Construction and Water Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Precipitation information plays an important role in calculating aquifer nutrition using mathematical models. In recent years, with the availability of satellite precipitation data, especially TRMM and GPM satellites, new and innovative methods have been developed to overcome the lack of access to precipitation data. However, barriers such as data uncertainty also limit these methods. In this study, after correcting the satellite data error, this information was used as a feed parameter to MODFLOW code, and the groundwater level uncertainty was calculated by different Coppola functions. Examination of groundwater model outputs showed a 50% reduction in root mean square error index (RMSE). It is worth noting that about 90% of the aquifer had a difference of less than 10%, about 8% had a difference of 20 to 30% and about 2% of the aquifer had an approximate difference of 80% of the observational data ratio. The mentioned results show the proper performance and with a reliability coefficient of over 90% of the Coppola functions in calculating the groundwater level uncertainty using satellite precipitation data as the feeding parameter.

کلیدواژه‌ها [English]

  • Copula functions
  • Ground water level uncertainty
  • MODFLOW Model
  • Satellite rainfall
  • TRMM
  1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4(6), 1147–1167.
  2. AghaKouchak(a), A., Bárdossy, A., & Habib, E. (2010). Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Advances in Water Resources, 33(6), 624–634.
  3. Aghakouchak(b), A., Habib, E., & Bárdossy, A. (2010). A comparison of three remotely sensed rainfall ensemble generators. Atmospheric Research, 98(2–4), 387–399.
  4. Al-Kharabsheh, A., & Al-Mahamid, J. (2002). Optimizing pumping rates of Hallabat-Khalidiya Wellfield using finite-difference model: a case study for evaluating overpumped aquifers in arid areas (Jordan). Journal of Arid Environments, 52(2), 259–267.
  5. Ansari,H, Naderianfar,M,. (2012). Evaluating the groundwater fluctuations with fuzzy Standardized Evapoprecipitation Index (SEPI). Water and Irrigation Management, Vol. 2, No. 1, Spring 2012, 2(1), 41-54.
  6. Anderson, M. P., & Woessner, W. W. (1992). The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167–173.
  7. Bellerby, T. J., & Sun, J. (2005). Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. Journal of Hydrometeorology, 6(6), 1032–1044.
  8. Chebana, F., & Ouarda, T. B. M. J. (2009). Index flood-based multivariate regional frequency analysis. Water Resources Research, 45(10), 5-10.
  9. Chen, L., Singh, V. P., Shenglian, G., Hao, Z., & Li, T. (2012). Flood Coincidence Risk Analysis Using Multivariate Copula Functions. Journal of Hydrologic Engineering, 17(6), 742–755.
  10. Chiang, W.-H. (2005). 3D-Groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and transport processes. Verlag Berlin Heidelberg. Springer Science & Business Media.
  11. Csáfordi, P., Szabó, A., Balog, K., Gribovszki, Z., Bidló, A., & Tóth, T. (2017). Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach. Environmental Earth Sciences, 76(20), 7-13.
  12. De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50–57.
  13. Gehrels, J. C., van Geer, F. C., & de Vries, J. J. (1994). Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones. Journal of Hydrology, 157(1–4), 105–138.
  14. Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43(9), 3-5.
  15. Hong, Y., Chen, S., Xue, X., & Hodges, G. (2012). Global precipitation estimation and applications. Multiscale Hydrologic Remote Sensing: Perspectives and Applications, 1, 371–386.
  16. Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722.
  17. Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., & Wolff, D. B. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.
  18. Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., & Ma, M. (2012). Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. Journal of Hydrology, 452, 213–225.
  19. Kao, S. C., & Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), 3-8.
  20. König, L. F., & Weiss, J. L. (2009). Groundwater: modelling, management and contamination. UK. Nova Science Publishers.
  21. Moazami, S., Golian, S., Kavianpour, M. R., & Hong, Y. (2014). Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmospheric Research, 137, 145–166.
  22. Nelsen, R. B. (2006). Springer. Notes in Statist. In An introduction to copulas (p. 139). New York, NY.Lect
  23. Prabaharan, S. (2011). Geo Statistical Modelling for Groundwater Pollution in Salem , Tamilnadu- a Gis Based Approach. International Journal of Engineering Science and Technology (IJEST), 3(2), 1273–1278.
  24. Rowe, K., & Davis, J. M. (1997). Error analysis of parameters determined with statistical models of overlap from nonhomogeneous separations. Chemometrics and Intelligent Laboratory Systems, 38(2), 109–126.
  25. Serinaldi, F. (2009). A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. Journal of Geophysical Research, 114(D10), D10103.
  26. Shiau, J.-T., Wang, H.-Y., & Tsai, C.-T. (2006). BIVARIATE FREQUENCY ANALYSIS OF FLOODS USING COPULAS 1. Journal of the American Water Resources Association, 42(6), 1549–1564.
  27. Sklar, A. (1959). Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229–231.
  28. Song, S., & Singh, V. P. (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24(5), 783–805.
  29. Sushant, S., Balasubramani, K., & Kumaraswamy, K. (2015). Spatio-temporal Analysis of Rainfall Distribution and Variability in the Twentieth Century, Over the Cauvery Basin, South India. 21–41.
  30. Trivedi, P. K., & Zimmer, D. M. (2007). Copula modeling: an introduction for practitioners. Indiana University. Now Publishers Inc.
  31. Venkatesan, G., Subramani, T., Karunanidhi, D., Sathya, U., & Li, P. (2021). Impact of precipitation disparity on groundwater fluctuation in a semi-arid region ( Vellore district ) of southern India using geospatial techniques. Environmental Science and Pollution Research, 28(15), 18539-18551
  32. Wong, G., Lambert, M. F., & Metcalfe, A. V. (2008). Trivariate copulas for characterisation of droughts. In G. N. Mercer & A. J. Roberts (Eds.), Proceedings of the 8th Biennial Engineering Mathematics and Applications Conference, EMAC-2007 (C306--C323).
  33. Xie, Y., Cook, P. G., Simmons, C. T., Partington, D., Crosbie, R., & Batelaan, O. (2018). Uncertainty of groundwater recharge estimated from a water and energy balance model. Journal of Hydrology, 561, 1081–1093.
  34. Xue, X., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I., Dorji, C., & Chen, S. (2013). Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499, 91–99.
  35. Zekri, S., Triki, C., Al-Maktoumi, A., & Bazargan-Lari, M. R. (2015). An optimization-simulation approach for groundwater abstraction under recharge uncertainty. Water Resources Management, 29(10), 3681–3695.
  36. Zhang, Q., Li, J., Singh, V. P., & Xu, C.-Y. (2013). Copula-based spatio-temporal patterns of precipitation extremes in China. International Journal of Climatology, 33(5), 1140–1152.