تأثیر دبی و رطوبت اولیه بر ضریب زبری مانینگ در فازهای پیشروی و ذخیره در آبیاری جویچه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 استاد، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

4 دانش‌آموخته کارشناسی، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

ضریب زبری مانینگ پارامتری پیچیده و اثرگذار در آبیاری جویچه‌ای است و تعیین دقیق آن به‌دلیل تغییرات مکانی و زمانی ویژگی‌های خاک و پارامترهای هیدرولیکی جریان، پیچیده است. بنابراین این تحقیق با هدف تعیین ضریب زبری مانینگ در فازهای پیشروی و ذخیره و در رخدادهای اول تا سوم آبیاری انجام شد. در این پژوهش، زبری مانینگ در آبیاری جویچه‌ای در فازهای پیشروی و ذخیره به ترتیب با استفاده از مدل SIPAR_ID و معادله مانینگ تعیین شد. بدین منظور، مقادیر ضریب زبری در دو تیمار دبی ورودی (به طور متوسط 27/0 و 53/0 لیتر بر ثانیه)، دو تیمار دور آبیاری (5 و 10 روز)، دو مزرعه با بافت خاک متفاوت (E و F) و در سه آبیاری اول تا سوم و در سه تکرار مورد بررسی قرار گرفت. نتایج نشان داد که ضریب زبری مانینگ در فازهای پیشروی و ذخیره به ترتیب بین 017/0 تا 636/0 و 015/0 تا 317/0 متغیر بود و مقدار میانگین ضریب زبری در فاز پیشروی بیش‌تر از فاز ذخیره برآورد شد (به ترتیب 083/0 و 054/0). همچنین ضریب زبری مانینگ با افزایش شماره رخداد آبیاری در هر دو فاز، کاهش یافت. در مزرعه F با توجه به بافت خاک سنگین‌تر، اختلاف ضریب زبری مانینگ در هر دو فاز در آبیاری اول و دوم نسبت به زمین E کمتر بود. نتایج همچنین نشان داد که ضریب زبری با دبی و رطوبت اولیه خاک رابطه‌ای معکوس و ضعیف داشت اما دبی نسبت به رطوبت اولیه تأثیرگذارتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of inflow rate and initial soil moisture on Manning roughness coefficient in advance and storage phases in furrow irrigation

نویسندگان [English]

  • Hadi Rezaei Rad 1
  • Hamed Ebrahimian 2
  • Abdolmajid Liaghat 3
  • Fatemeh Khalaji 4
  • Mahshid Shabani Arani 4
1 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2 Associate Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
4 Bachelor Graduated, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Manning roughness coefficient is a complex and effective parameter in furrow irrigation, and its exact determination is complicated due to spatial and temporal changes of soil characteristics and hydraulic parameters of the flow. Hence, this study was conducted to determine the Manning roughness coefficient in the advance and storage phases and in the first to third irrigation events. In this study, Manning roughness in furrow irrigation in the advance and storage phases was determined using the SIPAR_ID model and the Manning equation, respectively. For this purpose, the value of Manning roughness coefficient for two inflow treatments (an average of 0.27 and 0.53 L/S), two irrigation cycle treatments (5 and 10 days), and two different fields (E and F) was examined in the first to third irrigation events and in three replications. The results showed that the value of Manning roughness coefficient in the advance and storage phases of three irrigation events (first to third irrigation) was between 0.017 to 0.636 and 0.015 to 0.317, respectively. Also, it was found that the average roughness coefficient in the advance phase was more than the one in storage phase (0.083 and 0.054, respectively). In addition, the roughness coefficient in the two phases reduced by increasing irrigation events. In field F, due to the heavier soil texture, the difference in Manning roughness coefficient in both phases in the first and second irrigation was lower than the ones in field E. The results also indicated that the roughness coefficient had an inverse and poor relationship with the initial soil moisture and inflow. However, the inflow was more effective than the initial moisture.

کلیدواژه‌ها [English]

  • Irrigation interval
  • Manning equation
  • Surface irrigation
  • SIPAR
  1. Amiri, M. J., Bahrami, M., Hamidifar, H., & Eslamian, S. (2016). Modification of furrow Manning’s roughness coefficient estimation by finite difference technique under surge and continuous flow. International Journal of Hydrology Science and Technology, 6(3), 226-237.
  2. Bahmani, O., Akhavan, S., Khoramian, M., & Gholizadeh Khalteh, G. (2020). Effect of different tillage methods and furrow spacing on soil hydraulic characteristics in furrow irrigation. Irrigation Sciences and Engineering, 43(1), 145-156. (in Persian)
  3. Chow, V. T. (1959). open-channel hydraulicd. New York. McGRAW-HILL Book Company.
  4. Clemmens, A. J., Eisenhauer, D. E., & Maheshwari, B. L. (2001). Infiltration and roughness equations for surface irrigation: How Form Influences Estimation. ASAE Meeting Paper. American Society of Agricultural and Biological Engineers.
  5. Ebrahimian, H. (2014). Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering, 18(6), 1904-1911.
  6. Enciso-Medina, J., Martin, D., & Eisenhauer, D. (1998). Infiltration model for furrow irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 73-80.
  7. Esfandiari, M., & Maheshwari, B. L. (1998). Suitability of selected flow equations and variation of Manning’s n in furrow irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 89-95.
  8. Grassi, C. J. (1972). Infiltration Characteristics Heavy-Textured Soil. Doctoral dissertation. Wageningen University. The Netherlands.
  9. Harun-ur-Rashid, M. (1990). Estimation of Manning ’ s roughness coefficient for basin and border irrigation. Agricultural Water Management, 18(1), 29-33.
  10. Izadi, B., & Wallender, w. w. (1985). Furrow hydraulic characteristics and infiltration. Transactions of the ASAE, 28(6), 1901-1908.
  11. Kamali, P., Ebrahimian, H., & Parsinejad, M. (2018). Estimation of Manning roughness coefficient for vegetated furrows. Irrigation Science, 36(6), 339-348.
  12. Kassem, M. A., & Ghonimy, M. I. (2011). Determination of Manning roughness coefficient for border irrigation system. Misr Journal of Agricultural Engineering, 28(2), 302-323.
  13. Katopodes, N. D., Tang, J., & Clemmens, A. J. (1990). Estimation of surface irrigation parameters. Journal of Irrigation and Drainage Engineering, 116(5), 676-696.
  14. Li, Z., & Zhang, J. (2001). Calculation of field Manning’s roughness coefficient. Agricultural Water Management, 49(1), 153-161.
  15. Mailapalli, D. R., Raghuwanshi, N. S., Singh, R., Schmitz, G. H., & Lennartz, F. (2008). Spatial and temporal variation of Manning’s roughness coefficient in furrow irrigation. Journal of Irrigation and Drainage Engineering, 134(2), 185-192.
  16. Nie, W.-B., Li, Y.-B., Zhang, F., Dong, S.-X., Wang, H., & Ma, X.-Y. (2018). A method for determining the discharge of closed-end furrow irrigation based on the representative value of Manning’s roughness and field mean infiltration parameters estimated using the PTF at regional scale. Water, 10(12), 1825.
  17. Nie, W., Fei, L., & Ma, X. (2014). Impact of infiltration parameters and Manning roughness on the advance trajectory and irrigation performance for closed-end furrows. Spanish Journal of Agricultural Research, 12(4), 1180-1191.
  18. Ramezani Etedali, H., Liaghat, A., & Abbasi, F. (2012). Evaluation of the evalue model for estimating Manning’s roughness in furrow irrigation. Irrigation and Drainage, 61(3), 410-415.
  19. Rezaverdinejad, V., Ahmadi, H., Hemmati, M., & Ebrahimian, H. (2016). Evaluation and comparison of different approaches of infiltration parameters estimation under different furrow irrigation systems and inflow regimes. Journal of Science and Technology of Agriculture and Natural Resources, 20(76), 161-176. (in Persian).
  20. Rodríguez, J. A., & Martos, J. C. (2010). SIPAR_ID: Freeware for surface irrigation parameter identification. Environmental Modelling & Software, 25(11), 1487-1488.
  21. Sedaghatdoost, A., & Ebrahimian, H. (2015). Calibration of infiltration, roughness and longitudinal dispersivity coefficients in furrow fertigation using inverse modelling with a genetic algorithm. Biosystems Engineering, 136(1), 129-139.
  22. Sepaskhah, A. R., & Bonder, H. (2002). Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosystems Engineering, 83(3), 351-357.
  23. Trout, T. J. (1992). Flow velocity and wetted perimeter effects on furrow infiltration. Transactions of the American Society of Agricultural Engineers, 35(3), 855-863.
  24. USDA. (1974). SCS National Engineering Handbook: Irrigation. Border irrigation.
  25. Walker, W. R. (1987). Surface irrigation theory and practice. (1st ed.). New Jersey. Prentice-hall.
  26. Zarakani, K., Remazani Etedali, H., & Daneshkar Arasteh, P. (2020). Estimation of infiltaration parameters and Manning roughness coefficient under two continuous and cutback flows regims Keyvan. Journal of Water and Soil Resources Conservation, 9(2), 89-101. (in Persian)