مدل سازی درصد کاهش هد جریان غلیظ نمکی با استفاده از هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

2 استاد، گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استاد، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران و گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

جریان‌ غلیظ یکی از مهمترین عوامل در فرآیند رسوب‌گذاری سدها می‌باشد. چون این جریان‌ از عوامل موثر بر کاهش کارایی عمر سدهای بزرگ بوده، بنابراین درک الگوهای رسوب‌گذاری جهت مدیریت مخزن سدها بسیار کارآمد می‌باشد. براین اساس در این تحقیق درصد کاهش هد جریان غلیظ نمکی تحت تاثیر موانع نفوذپذیر ذوزنقه‌ای شکل (پر شده با دانه-های شن با قطر 0.5 سانتی‌متر)، با در نظر گرفتن متغیرهایی همچون دبی، شیب، غلظت و ارتفاع موانع به‌صورت آزمایشگاهی مورد بررسی قرار گرفت، براساس نتایج حاصله اقدام به مدل‌سازی هد جریان غلیظ نمکی با روش شبکه عصبی مصنوعی پیش‌خور و روش کلاسیک رگرسیون چند متغیره شد و کارکرد این دو روش مورد مقایسه قرار گرفت. نتایج نشان داد که روش هوشمند شبکه عصبی مصنوعی پیش‌خور در مدل‌سازی درصد کاهش هد جریان غلیظ نمکی نسبت به روش رگسیون چند متغیره برتری قابل توجهی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the reduction percentage of the density current head flux using artificial intelligence

نویسندگان [English]

  • Mehdi Derakhshannia 1
  • Mehdi Ghomeshi 2
  • Seyed Saeid Eslamian 3
  • Seyed Mahmood Kashefipour 2
1 Ph.D. Candidate, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Professor, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran. and Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Density current is one of the most important factors in the sedimentation process of dams. Because this current is one of the important factors affecting the reduction of life efficiency of large dams, so understanding sedimentation patterns to manage the reservoir of dams is very effective. Accordingly, in this study, the reduction percentage of the density current head flux under the influence of trapezoidal permeable barriers (filled with sand grains with a diameter of 0.5 cm) is investigated also variable parameters effect such as discharge, slope, concentration and height of obstacles on density current control is examined experimentally, based on the results, the reduction percentage of the density current head flux was modeled using the artificial neural network feed-forward method and the classical multivariable regression method, and the performance of these two methods was compared. The results showed that the intelligent method of feed-forward artificial neural network has a significant advantage over the multivariable regression method in modeling the reduction percentage of the density current head flux.

کلیدواژه‌ها [English]

  • Density current
  • Feed-forward artificial neural network
  • Head reduction percentage
  • Multivariable regression
  1. Abhari, M.N., Iranshahi, M., Ghodsian, M., & Firoozabadi, B. (2018). Experimental study of obstacle effect on sediment transport of turbidity currents. Journal of Hydraulic Research, 56(5), 618-629.
  2. Asghari Pari, S. A., Kashefipour, S. M., & Ghomeshi, M. (2017). An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents. European Journal of Environmental and Civil Engineering, 21(9), 1080-1092.
  3. Asghari Pari, S. A., Kashefipour, S., Ghomeshi, M., & Bajestan, M. S. (2010). Effects of obstacle heights on controlling turbidity currents with different concentrations and discharges. Journal of Food, Agriculture & Environment, 8(2), 930-935.
  4. Baghalian, S., & Ghodsian, M. (2020). Experimental study on the effects of artificial bed roughness on turbidity currents over abrupt bed slope change. International Journal of Sediment Research, 35(3), 256-268.
  5. Bishop, C. M. (2006). Pattern recognition and machine learning. Cambridge: Springer.
  6. Davoodi, L., & Shafaei Bajestan, M. (2011). Application of submerged plates in bed sediment load control of branched catchments from trapezoidal irrigation canals. Water and Irrigation Management, 1(2), 59-71. (In Persian).
  7. Ebrahimzadeh, A., Zarghami, M., & Nooranif, V. (2019). Hajilarchai dam overpass risk management with monte carlo simulation and system dynamics. Water and Irrigation Management, 5(1), 96-81. (In Persian).
  8. El-Kenawy, E.S.M., Ibrahim, A., Mirjalili, S., Eid, M.M. & Hussein, S.E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8, 179317-179335.
  9. He, Z., Zhao, L., Hu, P., Yu, C., & Lin, Y.T. (2018). Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Advances in Water Resources, 119, 164-177.
  10. Jahangir, A., Esmaili, K., & Maghrebi, M.F. (2020). Experimental investigation of porosity, installation angle, thickness and second layer of permeable obstacles on density current. International Journal of Engineering, 33(9), 1710-1720.
  11. Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for optimization. Stanford: Mit Press.
  12. Kooti, F., & Kashefipour, S. M. (2018). Sensitivity of the head velocity in density currents to the various initial conditions. ISH Journal of Hydraulic Engineering, 24(1), 74-80.
  13. Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and software 15(1), 101-24.
  14. Nasrollahpour, R., & Ghomeshi, M. (2012). Effect of roughness geometry on characteristics of density currents head. Indian Journal of Science and Technology, 5(12), 3783-3787.
  15. Oshaghi, M. R., Afshin, H., & Firoozabadi, B. (2013). Experimental investigation of the effect of obstacles on the behavior of turbidity currents. Canadian Journal of Civil Engineering, 40(4), 343-352.
  16. Pirnia, S. P., Wali Samani, J., & monaem, M. J. (2012). Spatial and temporal study of salinity infiltration in tidal river using COHERENS model: a case study of Bahmanshir river. Journal of Water and Irrigation Management, 3(1), 13-27. (In Persian).
  17. Rojas, R (2013). Neural networks: a systematic introduction. Berlin: Springer Science & Business Media.
  18. Rzadkiewicz, S. A., Mariotti, C., & Heinrich, P. (1997). Numerical simulation of submarine landslides and their hydraulic effects. Journal of Waterway, Port, Coastal, Ocean Eng, 123(4), 149-157.
  19. Wilson, R.I., Friedrich, H., & Stevens, C. (2018). Flow structure of unconfined turbidity currents interacting with an obstacle. Environmental Fluid Mechanics, 18(6), 1571-1594.
  20. Xu, J., Li, Y., Xuan, G., Melville, B.W., & Macky, G.H. (2020). Numerical simulation of turbidity current in approach channels with a closed end. Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(5), 04020036.