ارزیابی شاخص تنش آبی گیاه برای سیب‌زمینی تحت رژیم‌های متفاوت آبیاری در سامانه‌های آبیاری قطره‌ای سطحی و زیر سطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

2 دانشیار، گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

3 استاد، گروه آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

4 استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان چهار محال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد

چکیده

به منظور ارزیابی شاخص تنش آبی گیاه سیب‌زمینی، طرحی در سال 1397 به صورت اسپلیت- پلات در قالب بلوک‌های کامل تصادفی در مرکز تحقیقات کشاورزی و منابع طبیعی شهرکرد اجرا شد. این آزمایش شامل دو روش آبیاری قطره‌ای سطحی و زیر سطحی در کرت‌های اصلی و چهار سطح آبیاری (آبیاری کامل، کم‌آبیاری 80 و 65 درصد و خشکی 75 درصدی موضعی ریشه (〖PRD〗_75)) در کرت‌های فرعی، در سه تکرار برای سیب‌زمینی (رقم بورن) با طول دوره‌ی رشد 120 روز، انجام گرفت. بر اساس نتایج بدست آمده، روند تغییرات مقدار شاخص تنش آبی گیاه در تیمارهای کم‌آبیاری برای آبیاری قطره‌ای سطحی و زیر سطحی به ترتیب بین 16/0 تا 56/0 و 15/0 تا 49/0 به‌دست آمد. رابطه شاخص تنش آبی گیاه با عملکرد محصول(Y) برای آبیاری قطره‌ای سطحی و زیرسطحی به ترتیب برابر Y=-122.28 CWSI+82.38 و Y=-101.61 CWSI+70.97 به‌دست آمد. میزان عملکرد محصول تیمارهای FI، 〖RDI〗_80، 〖PRD〗_75 و 〖RDI〗_65 در آبیاری قطره‌ای سطحی به‌ترتیب 1/52، 48، 6/31 و 4/23 تن در هکتار و برای آبیاری قطره‌ای زیرسطحی به‌ترتیب 6/48، 3/44، 6/29 و 8/21 تن در هکتار به‌دست آمد. حداکثر حجم آب مصرفی گیاه برای تیمار FI برابر 2/4590 مترمکعب در هکتار به‌دست آمد. نتایج نشان داد جهت دستیابی به بالاترین عملکرد در روش آبیاری قطره‌ای سطحی، گیاه سیب‌زمینی باید در محدوده‌ی 16/0 تا 2/0 شاخص تنش آبی گیاه، آبیاری گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Crop Water Stress Index (CWSI) for potato under different irrigation regimes in surface and subsurface drip irrigation systems

نویسندگان [English]

  • Kobra Kheyri Shalamzari 1
  • amir Soltani Mohammadi 2
  • Saied Broomand Nasab 3
  • bijan haghighati 4
1 Ph.D. Student of Irrigation and Drainage, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz
2 Associate professor of Irrigation and Drainage, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz
3 Professor of Irrigation and Drainage, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz
4 Assistant Professor, Soil and Water Research Department, Agriculture and Natural Resources Research and Education Center of Chaharmahal and Bakhtiari Province, AREEO (Agricultural Research, Education and Extention Organization), Shahrekord
چکیده [English]

In order to evaluate the Crop Water Stress Index (CWSI) of potato crop, a split- plot design was carried out in a randomized complete block design in Shahrekord Agricultural and Natural Resources Research Center in the growing season of 2018. This experiment consists of two methods of irrigation (surface and subsurface drip irrigation) in the main plots and four irrigation levels (Full Iirrigation, FI; Regulated Deficit Irrigation, RDI-80; Regulated Deficit Irrigation, RDI-65; and Partial Root-zone Drying PRD-75) in subplots, in three replications for potato (Bourren cultivar) with a period of growth of 120 days. Based on the results, the trend of changes in the CWSI of the crop in irrigation treatments for surface and subsurface drip irrigation was between 0.16 and 0.56 and 0.15-0.49, respectively.The relationship between CWSI and yield (Y) for surface and subsurface drip irrigation was Y = -122.28 CWSI + 82.38 and Y = -101.61 CWSI + 70.97, respectively. The yield of crop for treatments FI، RDI_80، PRD_75 and RDI_65 in surface drip irrigation was 52.1, 48, 31.6, and 23.4 Ton.ha-1, respectively and for subsurface drip irrigation 48.6, 44.3, 29.6 and 21.8 Ton.ha-1, respectively.The maximum amount of water consumed for treatment FI was 4590.2 m3.ha-1. The results showed that in order to achieve the highest yield in subsurface drip irrigation, the potato crop should be irrigated in the range of 0.16 to 0.2 of the CWSI.

کلیدواژه‌ها [English]

  • Base lines equations
  • Canopy temperature
  • Infrared thermometer
  • Irrigation scheduling
  • Regulated Deficit irrigation
1. احمدی ح، نصراللهی ع، شریفی‌پور م و عیسوند ح )1397( تعیین شاخص تنش آبی گیاه (CWSI) سویا برای مدیریت آبیاری جهت حداکثر عملکرد و بهره‌وری آب. مهندسی آبیاری و آب. 8 (32): 56-43.
2. احمدی ح، نصراللهی ع، شریفی‌پور م و عیسوند ح (1396) برنامه‌ریزی آبیاری سویا با استفاده از اختلاف دمای هوا و پوشش گیاهی. مدیریت آب و آبیاری. 7 (1): 133-121.
3. دهقانی سانیج ح، نخجوانی مقدم م و قهرمان ب (1396) کاربرد شاخص تنش آبی گیاه برای زمان‌بندی تک‌آبیاری گندم دیم. آبیاری و زهکشی ایران. 4 (11): 561-552.
4. سعیدی‌نیا م (1393) بررسی اثر شوری آب آبیاری بر عملکرد ذرت با استفاده از شاخص CWSI و شبیه‌سازی آن با مدل AquaCrop، تحت شرایط تغییر اقلیم (مطالعه موردی: منطقه اهواز). دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز. پایان نامه دکتری.
5. سیفی ا، میرلطفی س م، دهقانی سانیج و ترابی م (1393) تعیین شاخص تنش آب برای درختان پسته تحت روش آبیاری قطره‌ای زیرسطحی با استفاده از اختلاف دمای تاج گیاه و هوا. مدیریت آب و آبیاری. 4 (1): 136-123.
6. فیضی‌اصل و، فتوت ا، آستارایی ع، لکزیان ا و موسوی شلمانی م )1393( تعیین موازنه آبی و مراحل بحرانی آن در گندم دیم با استفاده از شاخص تنش آبی گیاه (CWSI). علوم و صنایع کشاورزی.  28 (4): 804-817..
7. قربانی م و برومندنسب س (1395) بررسی اثر شوری آب در آبیاری بر میزان شاخص تنش آبی گیاه (CWSI) در برنامه‌ریزی آبیاری ذرت تابستانه. مهندسی آبیاری و آب. 7 (25):54-67.
8. ویسی ش، ناصری ع و حمزه س (1395) تعیین زمان آبیاری مزارع نیشکر با استفاده از دماسنج مادون قرمر حرارتی و رطوبت خاک ناحیه ریشه. پژوهش‌های حفاظت آب و خاک. 23 (6): 235-251.
9. هزارجریبی ا، هزارجریبی ا، ذاکری‌نیا م، قربانی نصرآباد ق و جهانتیغ ح (1393) تأثیر تنش آبی با استفاده از آبیاری بارانی به روش تک‌شاخه‌ای بر عملکرد سویا. آبیاری و زهکشی ایران. 4 (8): 757-765.  
10. Aladenola O and Madramootoo C )2012( Effect of different water application on yield and water use of bell pepper under greenhouse conditions. Northeast Agricultural and Biological Engineering Conference, Canadian.
11. Bahmani O, Sabziparvar A and Khosravi R (2016) Evaluation of yield, quality and crop water stress index of sugar beet under different irrigation regimes. Water Science and Technology. 17(2): 571-578.
12. Colak Y, Yazar A, Colak I, Akca H and Duraktekin G (2015) Evaluation of Crop Water Stress Index (CWSI) for Eggplant under varying irrigation regimes using surface and subsurface drip Systems. Agriculture and Agricultural Science Procedia. (4): 372-382.
13. Çolak YB and Yazar A (2017) Evaluation of crop water stress index on royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean region. Scientia Horticulturae. 224: 384-394.
14. Candogan BN, Sincik M, Buyukcangaz H, Demirtasa C, TanjuGoksoy A and Yazgana S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.]in sub-humid climatic conditions. Agricultural Water Management. 118: 113–121.
15- Da Silva CJ, Da Silva CA, De Freitas CA, Golynski A, Da Silva LF and Frizzone J (2018) Tomato water stress index as a function of irrigation depths. Revista Brasileira de Engenharia Agrícola e Ambiental. 22 (2): 95-100.
16. Dugo VG, Tejada PJ and Fereres E (2014) Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agricultural and Forest Meteorology. 199: 94-104.
17. Erdem T, Halimorta A, Erdem Y and Okursoy H (2005) Crop water stress index for potato under furrow and drip irrigation systems. Potato Research. 48: 49-58.
18. Erdem Y, Arin L, Erdem T, Polat S, Deveci M, Okursoy H and Guitas T (2010) Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica). Agricultural Water Management. 98: 148-156.
19. Garcia brunini R and Pitelli Turco J (2018) Water stress index on sugarcane in different developmental phases. Ciencia Agrotecnologia. 42(2): 204-215.
20. Ghaemi A, Moazed H, Rafiee M and Broomandnasab S (2015) Determining CWSI to estimate eggplant evapotranspiration and yield under greenhouse and outdoor conditions. Iran Agricultural Resarch. 34(2): 49-60.
21. Idso SB, Jackson RD, Pinter PJ and Reginato RJ (1981) Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology. 24: 45-55.
22. Idso SB, Reginato RJ and Radin JW (1982) Leaf diffusion resistance and photosynthesis in cotton related to a foliage temperature based plant water stress index. Agricultural Meteorology. 27: 27-34.
23. Kar G and Kumar A (2007) Surface energy fluxes and crop water stress index in groundnut under irrigated ecosystem. Agricultural and Forest Meteorology. 146: 94-106.
24. Metin Sezen S, Yazar A, Dasgan Y, Yucel S, Akyildiz A, Tekin S and Akhoundnejad Y (2014) Evaluation of crop water stress index (CWSI) for red pepper with dripand furrow irrigation under varying irrigation regimes. Agricultural Water Management. 143: 59-70.
25. Ortal A, Erdem Y and Erdem T (2003) Crop water stress index for watermelon. Scientia Horticulturae. 98: 121-130.
26- Osroosh Y, Petet RT and Campbell C (2016) Daylight crop water stress index for continuous monitoring of water status in apple trees. Irrigation Science 34 (3): 209-219.
27. Platineanu C, Chitu E and Tanasescu N (2011) Correlation between the crop water stress index and soil moisture content for Apple in a loamy soil: a case study in southern Romania. Acta Horticulturae. 889: 257-264.
28. Rizza F, Badeck FW, Cattivelli L, Lidestri O, Fonzo N and Stanca AM (2004) Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science. 44: 2127-2137.
29. Usman M, Ahmad A, Ahmad SH, Arshad M, Khaliq T, Wajid A, Hussain KH, Nasim W, Chattha TM, Trethowan R and Hoogenboon G (2009) Development and application of rop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. Food, Agriculture and Environment. 7: 386 -391.
30. Vaysi Sh, Naseri A, Hamzeh S and Bartholomeuse H (2017) A satellite based crop water stress index for irrigation scheduling insugarcane fields. Agricultural Water Management. 189: 70-86.