مطالعه مقایسه‌ای جریان آب-هوا در پرش هیدرولیکی به‌کمک نرم‌افزارهای اوپن‌فوم و انسیس فلوئنت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران.

10.22059/jwim.2025.388864.1206

چکیده

پرش هیدرولیکی نوعی جریان متغیر سریع بوده که در اثر آن جریان فوق بحرانی در فاصله کوتاهی به جریان زیربحرانی تبدیل می‌شود. این پدیده به‌دلیل کاربردها و مزیت‌های فراوانی که دارد همواره موردتوجه پژوهش‌گران بوده است. در پژوهش حاضر، میدان جریان دوفازی آب- هوا در پرش هیدرولیکی در حالت دوبعدی به‌کمک نرم‌افزارهای متن‌باز اوپن‌فوم و تجاری انسیس فلوئنت شبیه‌سازی شده که پرش هیدرولیکی از نوع کلاسیک برای جریان ورودی با عدد فرود 5/7 و عدد رینولدز 106×4/1 می‌باشد. در شبیه‌سازی عددی فصل مشترک بین دو فاز آب‌وهوا از روش حجم سیال و برای مدل‌کردن آشفتگی از روش RANS استفاده شده نتایج حاصل از مدل‌سازی با استفاده از این دو نرم‌افزار با یکدیگر و نتایج آزمایشگاهی موجود در پیشینه پژوهش مقایسه شده است. نتایج پژوهش که شامل مشخصه‌های هیدرولیکی پرش از قبیل طول غلتک، عمق ثانویه، پروفیل سطح آزاد، حداکثر و حداقل سرعت در مقاطع قائم در طول پرش و غلظت هوای جریان می‌باشد حکایت از تطابق مناسب نتایج عددی و آزمایشگاهی دارد. طول غلتک پرش هیدرولیکی حاصله با استفاده از نرم‌افزارهای اوپن‌فوم و انسیس فلوئنت به‌ترتیب 51/1 و 55/1 متر محاسبه شد که خطا نسبت به مقادیر آزمایشگاهی به‌ترتیب حدود چهار و هفت درصد است. ضریب تعیین پروفیل سطح آزاد در اوپن‌فوم و انسیس فلوئنت به‌ترتیب 99 و 95 درصد بوده و شاخص KGE برای پروفیل سطح آزاد 94/0 و 8/0 است. حداکثر غلظت هوا در ناحیه برشی پرش در عمقی معادل 42/1 برابر عمق اولیه پرش، برابر با 41/0 مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Comparative Study of Air-Water Flow in Hydraulic Jump using OpenFoam and ANSYS Fluent Softwares

نویسندگان [English]

  • Nahid Mirizadeh
  • Mohammad Manafpour
Department of Civil Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
چکیده [English]

A hydraulic jump is a type of rapidly varied flow that occurs when supercritical flow transitions to subcritical flow over a short distance. This phenomenon has gathered significant attention from researchers due to its numerous advantages. In this study, the air-water two-phase flow field of the hydraulic jump is simulated in two dimensions using two software packages: OpenFoam and ANSYS Fluent. The Froude number for the hydraulic jump is 7.5, and the Reynolds number is 1.4 x 10^6. In order to simulate the flow field, the volume of fluid (VOF) method, along with Reynolds-Averaged Navier-Stokes (RANS) equations, were employed. The results from the two software packages were compared with one another, as well as with existing laboratory results and findings from the literature. The results include various hydraulic characteristics of the jump, such as roller length, secondary conjugate depth, free surface profile, maximum forward and backward velocity along the channel and the air concentration of the flow. These findings indicate an appropriate agreement between numerical simulations and experimental data. The calculated length of the hydraulic jump roller was 1.51 meters using OpenFoam and 1.55 meters using ANSYS Fluent, resulting in errors of approximately four and seven percent, respectively, compared to laboratory values. The coefficient of determination for the free surface profile was 99% for OpenFoam and 95% for ANSYS Fluent, while the Kling-Gupta Efficiency (KGE) index for the free surface profile was 0.94 and 0.8, respectively. The maximum air concentration in the shear region of the roller was observed at a depth of 1.42 times the initial depth of jump, with a concentration value of 0.41.

کلیدواژه‌ها [English]

  • Air-water two-phase flow
  • Computational fluid dynamics
  • Numerical modeling
  • Turbulence
  • Volume of fluid method
  1. Abbaszadeh, H., Daneshfaraz, R., & Norouzi, R. (2023). Experimental investigation of hydraulic jump parameters in sill application mode with various synthesis. Journal of Hydraulic Structures9(1), 18-42.
  2. Abbaszadeh, H., Norouzi, R., Sume, V., Kuriqi, A., Daneshfaraz, R., & Abraham, J. (2023). Sill role effect on the flow characteristics (experimental and regression model analytical). Fluids8(8), 235.
  3. Abbaszadeh, H., Daneshfaraz,R., Sume,V., & Abraham, J. (2024). Experimental investigation and application of soft computing models for predicting flow energy loss in arc-shaped constrictions. AQUA - Water Infrastructure, Ecosystems and Society, 73 (3), 637-661.
  4. Ansari, M., & Esmailpour, M. (2018). Comparison of the VOF and the two-fluid models for the numerical simulation of aeration and non aeration stepped spillway. Modares Mechanical Engineering, 17 (12), 255-265. (In Persian).
  5. Bai, R., Wang, H., Tang, R., Liu, S., & Xu, W. (2021). Roller Characteristics of Preaerated High-Froude-Number Hydraulic Jumps. Journal of Hydraulic Engineering, 147(4), 040210081-0402100819
  6. Bayon-Barrachina, A., Lopez, J., & Petra A. (2015). Numerical analysis of hydraulic jumps using Openfoam. Journal of Hydroinformatics, 17(4), 662-678.
  7. Bayon-Barrachina, A., Valero, D., García-bartual, R., & Jos, F. (2016). Performance assessment of Openfoam and Flow-3d in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335
  8. Celik, I., Ghia, U., Roache, P., Freitas, C., Coleman, H., & Raad, P. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 0780011-0780014.
  9. Chanson, H. (1995). Air entrainment in two-dimensional turbulent shear flows with partially developed inflow conditions. Journal of Multiphase Flow, 21( 6), 1107-1121.
  10. Chanson, H. (2004a). The hydraulics of open channel flow: an introduction. Oxford, UK, 2nd edition, 630 pages.
  11. Chanson, H., & Brattberg, T. (2000). Experimental study of the air-water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26( 4), 583-607.
  12. Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., & Azamathulla, H. M. (2022). Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients. Water Supply, 22(10), 7767-7781.
  13. Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., Kuriqi, A., & Di Francesco, S. (2022). Influence of Sill on the Hydraulic Regime in Sluice Gates: An Experimental and Numerical Analysis. Fluids7(7), 244.
  14. Estrella, J., Wüthrich, D., & Chanson, H. ( 2022). Two-phase air-water flows in hydraulic jumps at low Froude number: similarity, scale effects and the need for field observations. Experimental Thermal and Fluid Science, 130, 110486.
  15. Felder, S., & Chanson, H. (2016). An experimental study of air–water flows in hydraulic jumps with channel bed roughness: Research Report. University of New South Wales, Sydney, Australia, WRL WRL 259.
  16. Felder, S., Montano, L., Cui, H., Peirson, W., & Kramer, M. (2021). Effect of inflow conditions on the free-surface properties of hydraulic jumps. Journal of Hydraulic Research,  59, 1004-1017.
  17. Gou, W., & Shen, Zh. (2024). Numerical study of transition hydraulic jumps in different types of stilling basins using lattice Boltzmann methods. Physics of Fluids , 36 (11), 115120.
  18. Gualtieri, C., & Chanson, H. (2007). Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Environ Fluid Mech, 7, 217-238. 
  19. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91.
  20. Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28 ( 5), 591-608. 
  21. Hager, W. H. (1992). Energy dissipators and hydraulic jump. Netherlands: Kluwer Academic Publishers. Vol. 8
  22. Hassanzadeh, Y.,  Abbaszadeh, H.,  Abedi, A. & Abraham, J. (2024). Numerical simulation of the effect of downstream material on scouring-sediment profile of combined spillway-gate. AQUA-Water Infrastructure, Ecosystems and Society 1 December, 73 (12), 2322-2343.
  23. Hosseini, S. M., & Abrishami, J. (2010). Open channel hydraulics. Mashhad, Imam Reza University Press. (In Persian).
  24. Mukha, T., Almeland, S.K., & Bensow, R.E. (2022). Large-eddy simulation of a classical hydraulic jump: influence of modelling parameters on the predictive accuracy. Fluids, 7(3)-101.
  25. Murzyn, F., & Chanson H. (2009).  Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ Fluid Mech, 9, 143-159.
  26. Nilsson, H˚. (2017).  A description of isoAdvector- A numerical method for improved surface sharpness in two-phase flows, in Proceedings of CFD with opensource software: Course notes. http://dx.doi.org/10.17196.
  27. Pérez, J. F. (2020). Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins. Doctoral dissertation, Politécnica Valencia University, Spain.
  28. Pérez, J. F., Bayón, A., García-Bartual R., López-Jiménez P. A., & José Vallés-Morán F. (2020). Characterization of structural properties in high Reynolds hydraulic jump based on CFD and physical modeling approaches.  Journal of Hydraulic Engineering, 146( 12)-04020079-1-13.
  29. Pérez, J.F., García-Bartual, R., & López-Jiménez, P.A. (2023). Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins. Applied Water Science, 13, 203.
  30. Samkhaniani, N. (2023). Openfoam 9 training via problem-solving. (In Persian).
  31. Sayad Beyranvand, F., Heidarpour, M., & Salehi, S. (2024). Hydraulic characteristics of the hydraulic jump on the stepped, reverse slope and roughness. Modeling Earth Systems and Environment, 1-19.
  32. Stojnic, I. (2020). Stilling basin performance downstream of stepped spillways. Doctoral dissertation, EPFL University, Switzerland.
  33. Tang, R., Bai, R., & Wang, H. (2021) . A Comparative Study of  Pre-Aeration Effects on Hydraulic Jump Air–Water Flow Properties at High Froude Numbers. Environmental Fluid Mechanics, 21, 1333-1355.
  34. Viti, N., Valero, D., & Gualtieri, C. (2019). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water11(1), 28.
  35. Wang, H. (2014). Turbulence and air entrainment in hydraulic jumps. Doctoral dissertation, The University of Queensland, Australia.
  36. Wang, H., Felder, S., & Chanson, H. (2014). An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Exp Fluids, 55, 1775.
  37. Wang, H., & Chanson, H. (2013). Two-phase flow properties and free-surface deformations in hydraulic jumps. 8th International Conference on Multiphase Flow (ICMF), 26-31 May, Jeju, Korea, 1-9
  38. Wang, H., Murzyn, F., & Chanson, H. (2014). Pressure, turbulence and two-phase flow measurements in hydraulic jumps. Report CH95/14. School of Civil Engineering, The University of Queensland, 75-78.
  39. Wang, H., & Chanson, H. (2015a).  Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal, 12(6), 502-518.
  40. Wang, H., Murzyn, F., & Chanson, H. (2015). Interaction between free-surface, two-phase flow and total pressure in hydraulic jump. Experimental Thermal and Fluid Science, 64, 30-41.
  41. Wang, H., & Chanson, H. (2018). Estimate of void fraction and air entrainment flux in hydraulic jump using Froude number. Canadian Journal of Civil Engineering, 45(2), 105-116.
  42. Witt, A.M. (2014). Analytical and numerical investigation of an air entraining hydraulic jump. Doctoral dissertation, University of Minnesota, USA.
  43. Wüthrich, D., Shi, R., Wang, H., & Chanson, H. (2020).  Three-dimensional air-water flow properties of a hydraulic jump with low Froude numbers and relatively high Reynolds numbers. 8th IAHR International Symposium on Hydraulic Structures ISHS2020, 12-15 May, Santiago, Chile,  Brisbane, QLD, Australia: The University of Queensland.