بررسی آزمایشگاهی اثر تغییر عرض ناگهانی بر هیدرودینامیک جبهه جریان غلیظ و اندرکنش نیروهای مؤثر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه سازه‌های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

10.22059/jwim.2025.387490.1196

چکیده

در این پژوهش، ۱۸ آزمایش جهت بررسی اثر تنگ‌شدگی و باز‌شدگی ناگهانی، بر هیدرودینامیک پیشانی انجام شد. دبی جریان ۱/۱ لیتر بر ثانیه و متغیرها شامل غلظت‌های ۵ و ۱۰ گرم بر لیتر، شیب‌های صفر، ۵/۱ و ۳ درصد و نسبت‌های عرض ۳۹/۰، ۶۴/۰ و ۹۲/۰ بودند. رژیم جریان شامل هر سه حالت زیر بحرانی، بحرانی و فوق بحرانی بود. در تنگ‌شدگی با نسبت‌های ۳۹/۰ و ۶۴/۰، سرعت پیشانی ابتدا، به دلیل افزایش شار شناوری تا یک نقطه افزایش یافته و سپس تحت تأثیر اختلاط کاهش می‌یابد. افزایش شدت تنگ‌شدگی و شیب، سرعت بیشینه را بیشتر و محل وقوع آن را دورتر می‌کند؛ به نحویکه، در شیب ۳ درصد، سرعت بیشینه در نسبت ۳۹/۰ در مقایسه با نسبت ۶۴/۰، برای غلظت‌های ۵ و ۱۰ گرم بر لیتر به ترتیب ۲۹/۲۰ و ۴۹/۲۴ درصد افزایش یافت. در باز‌شدگی با دو نسبت مزبور، روند تغییرات سرعت با فاصله، به دلیل تشدید ناپایداری‌های تلاطمی کاهشی بود؛ که شدت آن برای نسبت ۳۹/۰ بیشتر بود. در نسبت ۹۲/۰، تنگ‌شدگی و باز‌شدگی تأثیر خاصی نداشته و تغییرات سرعت با فاصله، مشابه کانال با عرض ثابت، برای شیب صفر، نزولی و در کانال شیبدار، صعودی بود. تغییرات ارتفاع پیشانی با فاصله، در تنگ‌شدگی و بازشدگی، برای تمام نسبت‌ها، صعودی بود؛ که شدت آن برای نسبت کمتر، بیشتر بود. عملکرد تنگ‌شدگی به نفع نیروی رانش جریان است؛ که با افزایش شیب تقویت و با افزایش غلظت تضعیف ‌می‌شود. در باز‌شدگی، مقاومت ناشی از اختلاط غلبه دارد؛ که با افزایش غلظت تقویت و با افزایش شیب تضعیف می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation of the effects of sudden width changes on the hydrodynamics of density current front and the interaction of the effective forces

نویسندگان [English]

  • Pouya Ehdaei
  • Mehdi Ghomeshi
  • Mehdi Daryaee
  • Mohammad Reza Zayri
Department of Hydraulic Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this research, 18 experiments were conducted to investigate the effects of sudden constriction and expansion on frontal hydrodynamics. The flow rate was set at 1.1 l/s, with variables including concentrations of 5 and 10 gr/l, slopes of zero, 1.5, and 3 percent, and width ratios of 0.39, 0.64, and 0.92. The flow regime encompassed all three states: subcritical, critical, and supercritical. In constrictions with ratios of 0.39 and 0.64, the front velocity initially increases up to a point due to buoyancy flux but then decreases under the influence of mixing. Increasing the constriction intensity and slope raises the maximum velocity and delays its occurrence. Specifically, at a 3 percent slope, the maximum velocity for the 0.39 ratio compared to 0.64 increased by 20.29 percent and 24.49 percent for concentrations of 5 and 10 gr/l, respectively. In expansions with these two ratios, the velocity decreases with distance due to intensified turbulent instabilities, with a more pronounced effect at the 0.39 ratio. At the 0.92 ratio, constriction and expansion had no significant impact, and the velocity trend resembled that of a constant-width channel: decreasing at zero slope and increasing in sloped channels. The front height increased with distance in both constriction and expansion regions for all width ratios, with greater intensity at smaller ratios. The effect of constriction is in support of flow driving force, strengthened by slope but weakened by concentration. In expansion, mixing-induced resistance prevailed, strengthened by concentration but weakened by slope.

کلیدواژه‌ها [English]

  • Sudden Constriction
  • Sudden Expansion
  • Driving Force
  • Mixing-Induced Resistance
  • Kelvin-Helmholtz Instabilities
  1. Ahadiyan, J., & Musavi-Jahrom, S. H. (2008). Investigation of variation of efflux momentum in shallow receiving water using FLOW-3D. In Proceeding of International Symposium of Water Resource Management Tabriz, Iran,551-557. (In Persian).
  2. Ahadiyan, J., & Musavi-Jahromi, S. H. (2009). Effects of jet hydraulic properties on geometry of trajectory in circular buoyant jets in the Static Ambient Flow. Journal of Applied Sciences, 9, 3843-3849. https://scialert.net/abstract/?doi=jas.2009.3843.3849.
  3. Ahadiyan, J., Pipelzadeh, S., & Omidvarinia, M. (2016). Hydraulic simulation of sewage discharge in an irrigation and drainage system by changing the vertical angle of the bottom circular buoyant jet. Irrigation and Drainage Structures Engineering Research, 16(65), 1-18. doi: 10.22092/aridse.2016.105698.
  4. Akbarizadeh, M., Saffarian, M. R., & Ghomeshi, M. (2019). Experimental investigation of sediment accumulation reduction in reservoirs due to turbidity currents with channel insertion at the entrance. Journal of Civil Engineering. http://dx.doi.org/10.1007/s40999-019-00458-7
  5. Altinakar, M. S., Graf, W. H., & Hopfinger, E. J. (1990). Weakly depositing turbidity current on a small slope. Journal of Hydraulic Research, 28, 55-80. https://doi.org/10.1080/00221689009499147
  6. Arjmandi, H., Ghomeshi, M., Ahadiayn, J., & Goleij, H. (2012). Prediction of plunge point in the density current using RNG turbulence modeling. Water and Soil Science, 22(1), 171-185. (In Persian).https://water-soil.tabrizu.ac.ir/article_1115.html?lang=en.
  7. Asghari pari, S. A., kashefipour, S. M., & Ghomeshi, M. (2017). An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents. European Journal of Environmental and Civil Engineering, 21(9), 1080-1092. https://doi.org/10.1080/19648189.2016.1144537
  8. Baghalian, S., & Ghodsian, M. (2020). Experimental study on the effects of artificial bed roughness on turbidity currents over abrupt bed slope change. International Journal of Sediment Research, 35(3), 256-268. https://doi.org/10.1016/j.ijsrc.2019.12.004
  9. Baghalian, S., & Ghodsian, M. (2022). Experimental study of obstacle and bed roughness effects on behavior of turbidity current. Journal of Hydro-environment Research, 40, 77-90. https://doi.org/10.1016/j.jher.2021.11.002
  10. Britter, R. E., & Linden, P. F. (1980). The Motion of the front of a gravity current down an incline, Journal of Fluid Mechanics, 99(3): 531-543. https://doi.org/10.1017/S0022112080000754
  11. Fathi-Moghadam, M., Torabi Poudeh, H., Ghomshi. M., & Shafaei, M. (2008). The density current head velocity in expansion reaches. Lakes & Reservoirs: Research and Management, 13, 63-68. https://doi.org/10.1111/j.1440-1770.2007.00351.x
  12. Ghomeshi, M. (1995). Reservoir sedimentation modeling. Department of Civil and Mining Engineering. Doctoral dissertation, University of Wollongong, Australia.
  13. Ghomeshi, M., Baher, S., & Ehdaei, P. (2019). An Experimental study of plunge depth in the case of clear water movement. International Journal of River Basin Management, 17(3), 323-332. https://doi.org/10.1080/15715124.2018.1531420
  14. Goleaje, H., Ghomeshi, M., Ahadian, J., & Arjmandi, H. (2014). Effect of hydraulic and geometric parameters on plunge point in density current. Irrigation Sciences and Engineering, 37(1), 1-9. (In Persian). https://jise.scu.ac.ir/article_10841.html?lang=en.
  15. Goleij, H., Ahadiyan, J., Ghomeshi, M., & Arjmandi, H. (2014). The functional comparison of the turbulent model to the RNG model at predicting the plunge point depth. Journal of Water and Soil Science, 18 (69), 89-100. (In Persian). http://jstnar.iut.ac.ir/article-1-2865-en.html.
  16. Gray, T. E., Alexander, J., & Leeder, M. R. (2006). Longitudinal flow evolution and turbulence structure of dynamically similar, sustained, saline density and turbidity currents. Journal of Geophysical Research, 111(8), 1-14. https://doi.org/10.1029/2005JC003089
  17. Groenenberg, R. (2007). Process-based modelling of turbidity current hydrodynamics and sedimentation. Doctoral dissertation, Section of Applied Geology, Faculty of Civil Engineering and Geotechnology, Delft University of Technology, Netherlands.
  18. Heidari, T., Shahni Karamzadeh, N., & Ahadiyan, J. (2018). An experimental investigation of convergent rectangular surface jets: spreading characteristics of horizontal flow over the bed of deep and stagnant ambient water. International Journal of Civil Engineering, 17, 443-456. https://doi.org/10.1007/s40999-018-0350-8
  19. Kazemi Arpanahi, R., Ghomeshi, M., Ahadiyan, J., & Kahe, M. (2017). Laboratory and numerical study of dynamics salty density current in the reservoirs. Irrigation Sciences and Engineering, 40(2), 173-182. (In Persian). doi: 10.22055/jise.2017.13177
  20. Keulegan, G. H. (1958). 12th Progress Rep. on Model Laws for Density Currents. The motion of saline fronts in still water. U.S. Nat. Bur. Std., Rept. 5831, website: http://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=ha009221020
  21. Khalili Naftchali, A., Khozeymehnezhad, H., Akbarpour, A., & Varjavand, P. (2016). Experimental study on the effects of artificial vegetation density on forehead of saline current flow. Ain Shams Engineering Journal, 7(2), 799-809. https://doi.org/10.1016/j.asej.2015.12.006
  22. Kim, Y.D., Seo, I. W., Kang, S. W., & Oh, B.C (2002). Jet integral-particle tracking hybrid model for single buoyant jet. Journal of Hydraulic Engineering, 128(8), 753-760. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:8(753)
  23. Kooti, F. (2010). Interaction of reservoir bed slope and density current discharge on water entrainment. Water Engineering Science Faculty. Master dissertation, Shahid Chamran University of Ahwaz, Iran. (In Persian).
  24. Kooti, F., & Kashefipour, S. M. (2018). Sensitivity of the head velocity in density currents to the various initial conditions. ISH Journal of Hydraulic Engineering, 24(1), 74-80. https://doi.org/10.1080/09715010.2017.1350118
  25. Kullenberg, G. (1977). Entrainment velocity in natural stratified vertical shear flow. Estuarine and coastal marine science, 5(3), 329-338. https://doi.org/10.1016/0302-3524(77)90060-3
  26. Mansoujian, M. R., Ghomeshi, M., Hasounizadeh, H., & Hosseini, S. A. (2021). Effects of cylindrical and cubic piles on motion of density currents. GRAĐEVINAR, 73(5), 499-507. https://doi.org/10.14256/JCE.2867.2019
  27. Mansouri Hafshejani, M., Ghomeshi, M., Shafaee bajestan, M., & Ahadiyan, J. (2016). Estimation of Relative Head Velocity of Density Current When Ambient Water Flowing in Same Direction of Density Current. Irrigation Sciences and Engineering, 39(4), 193-200. (In Persian). doi: 10.22055/jise.2016.12507.
  28. Nadian, H. A., Shahni Karamzadeh, N., Ahadiyan, J., & Bakhtiari, M. (2024). Trajectory and spreading of falling circular dense jets in shallow stagnant ambient water. Results in Engineering, 24, 102897. https://doi.org/10.1016/j.rineng.2024.102897.
  29. Ohey, C.D. (2003). Effects of obstacles and jets on reservoir sedimentation due to turbidity current. Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, Zurich, Switzerland.
  30. Sajadifar, R., & Ahadiyan, J. (2016). Spreading coefficient of buoyant jet flow in the shallow and deep Ambient Current. Water and Soil, 30(5), 1403-1414. (In Persian). doi: 10.22067/jsw.v0i0.42869.
  31. Simpson, J.E., & Britter, R.E. (1979). The dynamics of the head of a gravity current advancing over a horizontal surface. Journal of Fluid Mechanics, 94(3), 477-495. https://doi.org/10.1017/S0022112079001142
  32. Varjavand, P., Ghomeshi, M., Hosseinzadeh Dalir, A., Farsadizadeh, D., & Docheshmeh Gorgij, A. (2015). Experimental observation of saline underflows and turbidity currents, flowing over rough beds. Canadian Journal of Civil Engineering, 42, 834-844. https://doi.org/10.1139/cjce-2014-0537
  33. Wells, M., Cenedese, C., & Caulfield, C. P. (2010). The relationship between flux coefficient and entrainment ratio in density currents. Journal of Physical Oceanography, 40(12), 2713-2727. DOI: 10.1175/2010JPO4225.1