بررسی و مقایسه داده‌های اندازه گیری و برآوردی سرعت نفوذ آب، در سه نوع بافت خاک

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی آب، دانشکده فناوری کشاورزی، دانشگاه تهران، تهران، ایران.

10.22059/jwim.2025.388498.1202

چکیده

نفوذ آب در خاک‌ با بافت‌های مختلف رفتار متفاوتی دارد، پارامترهای آن تابعی از زمان و مکان بوده و تعداد زیادی اندازه‌گیری‌های مزرعه‌ای نیاز است تا نشان‌دهنده متوسط شرایط مزرعه باشد. اندازه‌گیری سرعت نفوذ آب در مزرعه به‌دلیل هزینه‌بر و زمان‌بربودن، با مدل‌های سرعت نفوذ برآورد می‌شود. برای طراحی سیستم‌های آبیاری و زهکشی، استفاده بهینه از آب و افزایش راندمان آبیاری، باید پارامترهای نفوذ با دقت بالا اندازه‌گیری و واسنجی شوند. هدف این پژوهش، بررسی و مقایسه داده‌های اندازه‌گیری‌شده در مزرعه با استفاده از روش استوانه‌های مضاعف و مقادیر برآوردی از معادله‌های سرعت نفوذ (کوستیاکوف، هورتون، فیلیپ و گرین و امپت)، برای سه نوع بافت خاک، در سه تکرار می‌باشد. برای ارزیابی دقت مقادیر برآوردی از معادلات سرعت نفوذ، از شاخص‌های ریشه میانگین مربعات خطا (RMSE)، میانگین انحراف خطا (MBE) و معیار ناش- ساتکلیف (ENS) استفاده گردید. معادله‌ای که کم‌ترین RMSE و MBE و بالاترین معیار ناش- ساتکلیف را داشته باشد، بهترین معادله برآورد سرعت نفوذ آب برای هر بافت خاک، انتخاب می‌شود. نتایج این پژوهش نشان داد که معادله گرین و امپت با بالاترین معیار کفایت ناش- ساتکلیف و کم‌ترین خطاهای RMSE و MBE، سرعت نفوذ را با دقت بالا و نسبتاً قابل‌قبول با داده‌های اندازه‌گیری‌شده برای خاک‌های شنی لومی، سیلتی لوم و رسی برآورد کرده ‌است. مقادیر برآوردی سرعت نفوذ به‌ترتیب با معادله کوستیاکوف برای خاک سیلتی لوم، معادله هورتون برای خاک شن لومی و معادله فیلیپ برای خاک رسی از دقت لازم برخوردار نبوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and comparison of Measured and Estimated Infiltration Rate in Three Soil Textures

نویسنده [English]

  • Behzad Azadegan
Behzad Azadegan, Department of Water Engineering, Faculty of Agricultural Technology, University of Tehran, Iran.
چکیده [English]

Infiltration in soils with different textures exhibits varying behavior. Infiltration rate parameters depend on time and location, requiring numerous field measurements used to represent average field conditions, but measuring in the field is costly and time-consuming; they are estimated by infiltration equations. For optimal water use and increased irrigation efficiency, infiltration equation parameters, which are an essential role in the design of irrigation and drainage systems, should be calibrated with high accuracy. The purpose of this research is to evaluate and compare field-measured data with estimates from equations (Kostiakov, Horton, Philip, Green and Ampt), based on the using the double-ring method for three soil textures in three replicates. In this research, the cumulative infiltration rate measured by the double rings method for sandy loam, silty loam, and clay soil textures. Evaluation to the accuracy of the estimated values, the study utilized RMSE, MBE, and ENS. The equation with the lowest RMSE and MBE and the highest ENS was identified as the best for estimating infiltration rates for each soil texture. The results of this research, based on the evaluation indicators, determined: the Kostiakov, Green and Ampt equation, with the highest Nash-Sutcliffe indices and the lowest RMSE and MBE errors, infiltration rate with high accuracy, like the measurement data, for sandy loam, silty loam, and clay soils have estimated with the most accuracy and the least error. However, the Kostiakov for silty loam, the Horton for sandy loam, and the Philip equations for clay soils did not achieve the desired accuracy.

کلیدواژه‌ها [English]

  • Double ring
  • Field
  • Infiltration rate
  • soil texture
  1. Almeida, W.S., Panachuki, E., de Oliveira, P.T.S., da Silva Menezes, R., Sobrinho, T.A., & de Carvalho, D.F. (2018). Effect of soil tillage and vegetal cover on soil water infiltration. Soil and Tillage Research, 175,130-138.
  2. Amami, R., Ibrahimi, K., Sher, F., Milham, P., Ghazouani, H., Chehaibi, S., Hussain, Z., & Iqbal, H. M. (2021). Impacts of different tillage practices on soil water infiltration for sustainable agriculture. Sustainability, 13(6), 3155.
  3. Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: implications for hydrologic modeling. Geoderma, 338, 159-169.
  4. Bajirao, T.S., & Vishnu, P. (2023). Comparative performance of different infiltration models for prediction of infiltration rate under different land-use conditions. Environmental Earth Sciences, 82(4), 1-18.
  5. Batoukhteh, F., Khoshravesh, M., & Dehghanisanij, H. (2021). Evaluating Some Infiltration Models under Different Soil Texture Classes and Land Uses in Urmia Lake Basin. Journal of Water Research in Agriculture (Soil and Water Sci.), 35(1), 73-87.
  6. Chari, M. M., Poozan, M. T., & Afrasiab, P. (2020) .Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56-66.
  7. Dahak, A., Boutaghane, H., & Merabtene, T. (2022). Parameter Estimation and Assessment of Infiltration Models for Madjez Ressoul catchment, Algeria. Water, 14(8), 1185.
  8. Duan, R., Fedler, C. B., & Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), 379-389.
  9. Faridah, S.N., Achmad, M., Jamaluddin, T.A., & Jusmira, J. (2023). Infiltration model of Mediterranean soil with clay texture. Jurnal Teknik Pertanian Lampung, 12(1), 162-168.
  10. Gebul, M.A. (2022). Simplified approach for determination of parameters for Kostiakov’s infiltration equation. Water Pract Technol, 17(11), 2435-2446.
  11. Ghosh, T., Maity, P. P., Das, T. K., Krishnan, P., Bhatia, A., Roy, M., & Sharma, D. K. (2020). Evaluation of different infiltration models under long term conservation agricultural practices. Indian Journal of Agricultural Science, 90, 2379-2384.
  12. Green, W., & Ampt, G.A. (1911). Studies on soil physics, I. Flow of air and water through soils. Journal of Agricultural Science, 4, 1-2.
  13. Haghnazari, F., Shahgholi, H., & Feizi, M. (2015). Factors affecting the infiltration of agricultural soils. Int J Agron Agric Res, 6, 21-35.
  14. Horton, R.E. (1940). An approach towards a physical interpretation of infiltration capacity. Soil Science Society of America, 5, 399-417.
  15. Kavousi, S.S., Vafakhah, M., & Mahdian, M.H. (2013). Evaluation of Some Infiltration Models for Different Land Uses in Kojour Watershed. Journal of Irrigation and Water Engineering, 4(1), 1-13.
  16. Kojouri, R., & Javadi, M.R. (2023). Comparison of the Efficiency of Some Soil Infiltration Models Based on the Data Obtained from Double Rings in Different Land Uses (Case Study: Mikhsaz Watershed). (In Persian).
  17. Kindo, S., Agrawal, N., & Shori, A. (2024). Evaluation of infiltration models in clay loam and laterite soils under field conditions. Journal of Environment Conservation, 25(1), 22-32.
  18. Kostiakov, A.V. (1932). On the dynamics of the coefficient of water percolation soils and the necessity for studying it from a dynamics point of view for purposes of amelioration. Transaction of the Sixth Commission of International Society of Soil Science. Part A., pp. 17-21.
  19. Mazighi, A., Meddi, H., Meddi, M., Abdi, I., Ravazzani, G., & Feki, M. (2023). Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria. Journal of Arid Land, 15(12), 1474-1489.
  20. Mesele, H., Grum, B., Aregay, G., & Teklay, B.G. (2024). Evaluation and comparison of infiltration models for estimating infiltration capacity of different textures of irrigated soils. Environmental Systems Research, 26, 13(1).
  21. Mishra, S. K., Tyagi, J. V., & Singh, V. P. (2003). Comparison of infiltration models. Hydrological processes, 17(13), 2629-2652.
  22. Mosammat, M. K., & Borhan, M. S. (2023). Evaluating model effectiveness for soil infiltration attribute: Comparison of Green-Ampt, Horton, and modified Green-Ampt infiltration models. Journal of Geoscience and Environment Protection, 11(2), 50-59.
  23. Neshat, A., and Parehkar, M. (2007). Comparison of the methods of determination of vertical soil water infiltration rate in the soil. Journal of Natural Resources and Agriculture, 14(3), 1-10.
  24. Nie, W., Ma, X., & Fei, L. (2017). Evaluation of infiltration models and variability of soil infiltration properties at multiple scales. Irrig Drain, 66, 589-599.
  25. Ogbe, V.B., Jayeoba, O.J., & Ode, S.O. (2011). Comparison of four soil infiltration models on a sandy soil in Lafia, Southern Guinea Savanna Zone of Nigeria. Production Agriculture and Technology, 7(2), 116-126.
  26. Omidvar, E., Kavain, A., & Solamani, K. (2014). Identification of the Best Infiltration Model in Order to Investigation of Spatial Variability of Infiltration Parameters (Case Study: Darabkola River Basin). E.E.R. 4(1), 1-16.
  27. Parchami Araghi, F., Mirlatifi, S.M., Ghorbani Dashtaki, S., & Mahdian, M.H. (2010). Evaluating Some Infiltration Models Uner Different Soil Texture Classes and Land Uses. Journal of Irrigation and Drainage, 2(4), 193-205.
  28. Patle, G.T., Sikar, T.T., Rawat, K.S., & Singh, S.K. (2019). Estimation of infiltration rate from soil properties using regression model for cultivated land. Geology, Ecology, and Landscapes, 3(1), 1-13.
  29. Philip, J.R. (1957). The theory of infiltration: 1.The infiltration equation and its solution. Soil Scienc, 83, 345-357.
  30. Salifu, A., Abagale, F.K., & Berisavljevic, G.K. (2021). Estimation of Infiltration Models’ Parameters Using Regression Analysis in Irrigation Fields of Northern Ghana. Journal of Soil Science, 11(3), 164-176.
  31. Song, J., Wang, J., Wang, W., Peng, L., Li, H., Zhang, C., & Fang, X. (2021). Comparison between different infiltration models to describe the infiltration of permeable brick pavement system via a laboratory-scale experiment. Journal of Water Sci Technol, 84 (9), 2214-2227.
  32. Thomas, A-D., Ofosu, A.E., Emmanuel, A., De-Graft, A.J., Ayine, A.G., Asare, A., & Alexander, A. (2020). Comparison and estimation of four infiltration models. Open Journal of Soil Science, 10(02), 45-57.
  33. Utin, U.E., & Oguike, P.C. (2018). Evaluation of Philip’s and Kostiakov’s infltration models on soils derived from three parent materials. Sci Eng Res., 5(6), 79-87.
  34. Vghefi, M., & Movahedzadeh, M. (2014). Evaluation and comparison of infiltration methods in the catchment area of Mond River–Dashti Township by use double ring tests. Journal of Irrigation and Water Engineering, 4(3), 1-12.
  35. Vand, A.S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative Evaluation of Infiltration Models. KSCE Journal of Civil Engeering, 22(10), 4173-4184.
  36. Vishwakarma, D. K., Yadav, D., Kumar, R., Bhat, S. A., Mirzania, E., & Kuriqi, A. (2024). Assessing the performance of various infiltration models to improve water management practices. Paddy and Water Environment. https://doi.org/10.1007/s10333-024-01000-9
  37. Zolfaghari, A.A., Mirzaee, S., & Gorji, M. (2012). Comparison of different models for estimating cumulative infiltration. Journal of Soil Science, 7, 108-115.