تأثیر کم‌آبیاری بر عملکرد و کارآیی مصرف آب گیاه کینوا در شرایط گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران.

2 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران.

10.22059/jwim.2025.387260.1195

چکیده

در این مطالعه به بررسی تأثیر سطوح مختلف کم‎آبیاری بر عملکرد و پارامترهای گیاهی محصول کینوا در گلخانه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی در دو سال زراعی 1397 و 1398 پرداخته شد. آزمایش در قالب طرح بلوک­های کامل تصادفی با پنج تکرار اجرا شد. تیمارهای اعمال‌شده شامل سطوح 40، 60، 80 و 100 (تیمار شاهد) درصد نیاز آبی محاسبه‌شده با تشت تبخیر کلاس A بود. نتایج نشان داد اثر کم‌آبیاری بر روی صفات ارتفاع بوته، عملکرد بیولوژیک، وزن هزاردانه، طول پدانکل، تعداد شاخه جانبی، وزن خشک ریشه و شاخص برداشت در سطح احتمال یک درصد معنی‌دار شد. هم‌چنین، نتایج نشان داد با افزایش درصد کم‌آبیاری، عملکرد دانه و عملکرد بیولوژیک کاهش می­یابند. برای سطوح آبیاری 100، 80، 60 و 40 درصد میانگین دو ساله عملکرد بیولوژیک به‌ترتیب 5/7445، 7316، 6410 و 5333 و عملکرد دانه 14/2068، 56/2026، 47/1987 و 45/18741 کیلوگرم بر هکتار شد. هم‌چنین کارایی مصرف آب براساس عملکرد بیولوژیک برای سطوح آبیاری مذکور به‌ترتیب 55/0، 67/0، 88/ و 23/1 و براساس عملکرد دانه 98/1، 43/2، 83/2 و 53/3 کیلوگرم بر مترمکعب به­دست آمد. نتایج کلی این پژوهش نشان داد که می‌توان با اجرای کم‌آبیاری به میزان 80 درصد نیاز آبی، بدون کاهش محسوس در عملکرد دانه و بیولوژیک و با افزایش معنی‌دار کارایی مصرف آب از این محصول به‌منظور کشت در مناطق خشک و نیمه‌خشک استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of deficit irrigation on quinoa performance and water use efficiency in greenhouse conditions

نویسندگان [English]

  • Yazdan Mohamadi 1
  • Houshang Ghamarnia 1
  • Mehdi Jovzi 2
1 Department of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
2 Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
چکیده [English]

This study examined the effects of different levels of deficit irrigation on the performance and plant parameters of quinoa in the research greenhouse of the College of Agriculture and Natural Resources, Razi University, over two cropping years (2018 and 2019). The experiment was conducted using a randomized complete block design with five replications. The treatments included irrigation levels of 40%, 60%, 80%, and 100% (control) of the calculated water requirement based on Class A evaporation pan. The results showed that deficit irrigation had a significant effect (at a 1% probability level) on plant height, biological yield, thousand-seed weight, peduncle length, number of lateral branches, root dry weight, and harvest index. Additionally, the results indicated that as the deficit irrigation percentage increased, grain yield and biological yield decreased. For the irrigation levels of 100%, 80%, 60%, and 40%, the two-year average biological yields were 7445.5, 7316, 6410, and 5333 kg/ha, respectively, while the grain yields were 2068.14, 2026.56, 1987.47, and 1874.45 kg/ha, respectively. Moreover, water use efficiency based on biological yield for the mentioned irrigation levels was 0.55, 0.67, 0.88, and 1.23 kg/m³, respectively, and based on grain yield, it was 1.98, 2.43, 2.83, and 3.53 kg/m³, respectively. The overall results of this study suggest that applying deficit irrigation at 80% of the water requirement can achieve significant improvements in water use efficiency without noticeable reductions in grain and biological yields, making quinoa a suitable crop for cultivation in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • Biological yield
  • Grain yield
  • Harvest index
  • Kermanshah
  1. Ahmadi, S. H., Solgi, S., & Sepaskhah, A. R. (2019). Quinoa: A super or pseudo-super crops Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agricultural Water Management, 225, 105784.
  2. Aly, A. A., Al-Barakah, F. N., & El-Mahrouky, M. A. (2018). Salinity Stress Promote Drought Tolerance of Chenopodium Quinoa Communications in Soil Science and Plant Analysis, 49(11), 1331-1343.
  3. Amiri, S. R., Salimi, K., & Ziaei, S. M. (2021). The effect of deficit irrigation on yield and water use efficiency of lentil (Lens culinaris). Environmental Stresses in Crop Sciences, 14(1), 75-83. (In Persian)
  4. Andreotti, F., Bazile, D., Biaggi, C., Callo-Concha, D., Jacquet, J., Jemal, O. M., & van Noordwijk, M. (2022). When neglected species gain global interest: Lessons learned from quinoa’s boom and bust for teff and minor millet. Global Food Security, 32, 100613.
  5. Asadi, M., & Abdolmanafi, N. (2022). The Intensification of the Groundwater Resources Crisis and the Necessity of Consumption Management. Tehran, Iran: Research Center of the Islamic Consultative Assembly press. (In Persian)
  6. Bahadori, M. R., Razzaghi, F., & Sepaskhah, A. R. (2022). Effect of Water Stress at Different Growth Stages on Growth and Yield of Quinoa under Field Conditions. Journal of Water and Soil Science, 26(3), 317-328. (In Persian)
  7. Bai, C., Zuo, J., Watkins, C. B., Wang, Q., Liang, H., Zheng, Y., & Ji, Y. (2023). Sugar accumulation and fruit quality of tomatoes under water deficit irrigation. Postharvest Biology and Technology, 195, 112112.
  8. Cecilia Araujo Farro, P. (2008). Desenvolvimento de filmes biodegradaveis a partir de derivados do grão de quinoa (Chenopodium quinoia Willdenow) da variedade “Real”. Universidade Estadual de Campinas.
  9. Choukr-Allah, R., Rao, N. K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., & Butt, K. U. R. (2016). Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Frontiers in Plant Science, 7, 346.
  10. Ehsany, M., Mehregan, N., & Balali, H. (2019). The Impact of Groundwater Exploitation on the Farmers’ Income of the Desert and Non-Desert Regions of Iran. Journal of Water Management in Agriculture, 5(2), 29-36. (In Persian).
  11. English, M., & Nakamura, B. (1989). Effects of Deficit Irrigation and Irrigation Frequency on Wheat Yields. Journal of Irrigation and Drainage Engineering, 115(2), 172-184.
  12. English, M., & Raja, S. N. (1996). Perspectives on deficit irrigation. Agricultural Water Management, 32(1), 1-14.
  13. Esmaeili, M., Farhadi Bansouleh, B., & Ghobadi, M. (2015). Effects of Deficit Irrigation on Quantity and Quality of Soybean Crop Yield in Kermanshah Region. Water and Soil, 29(3), 551-559. (In Persian).
  14. (2020). https://www.fao.org/faostat/en/
  15. Fatemi Kiyan, H., Tatari, M., Tokalo, M. R., Salehi, M., & Hajmohammadnia Ghalibaf, K. (2022). The effect of deficit irrigation and fertilizer on quantitative and qualitative yield of quinoa (Chenopodium quinoa). Italian Journal of Agrometeorology, 1, 83-99.
  16. Fuentes, F., & Bhargava, A. (2011). Morphological Analysis of Quinoa Germplasm Grown Under Lowland Desert Conditions. Journal of Agronomy and Crop Science, 197(2), 124-134.
  17. García-Parra, M.A., Roa-Acosta, D.F., Stechauner-Rohringer, R., García-Molano, F., Bazile, D., & Plazas-Leguizamón, N. (2020). Effect of Temperature on the Growth and Development of Quinoa Plants (Chenopodium quinoa): A Review on a Global Scale. Sylwan, 164(5), 411-423.
  18. Ghafarimoghadam, Z., Moradi, E., Hashemi Tabar, M., & Sardar Shahraki, A. (2021). An Analysis of the Water Crisis under Different Scenarios in the Agriculture Sector of Sistan Region: The Approach of Future Studies. Journal of Water Research in Agriculture, 35(2), 201-216. (In Persian)
  19. Jamali, S., Sharifan, H., & Sajadi, F. (2019). The Effect of different Seawater and Deficit Irrigation Regimes on Leaf properties of Quinoa. Journal of Water and Irrigation Management, 8(2), 177-191. (In Persian)
  20. Karimzadeh, H., Nezami, A., Kafi, M., & Tadayon, M.R. (2017). Effect of deficit irrigation on yield and yield component of pinto bean genotypes in Shahrekord. Iranian Journal of Pulses Research, 8, 113-126. (In Persian)
  21. Kaya, Ç. I., Yazar, A., & Sezen, S. M. (2015). SALTMED Model Performance on Simulation of Soil Moisture and Crop Yield for Quinoa Irrigated Using Different Irrigation Systems, Irrigation Strategies and Water Qualities in Turkey. Agriculture and Agricultural Science Procedia, 4, 108-118.
  22. Mao, X., Liu, M., Wang, X., Liu, C., Hou, Z., & Shi, J. (2003). Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agricultural Water Management, 61(3), 219-228.
  23. Marzban, H., Sadraei Javaheri, A., Zibaei, M., Nazemosadat, S. M. J., & Karimi, L. (2019). Study of the Status of Resources and Water Consumption in Iran and Improving the Situation. Journal of Water and Wastewater, 30(4), 16-32. (In Persian)
  24. Mohammadi, Y., Ghamarnia, H., & Jovzi, M. (2024). Investigating the effect of shallow and saline waterlogging levels on the yield and efficiency of water consumption of quinoa (Chenopodium Quinoa Wild) plant in the greenhouse environment. Iranian Journal of Irrigation & Drainage, 18(1), 155-172. (In Persian)
  25. Mostafaee, M., Jami Al-Ahmadi, M., Salehi, M., & Shahidi, A. (2023). Investigation of Physiological and Yield Characteristics of Quinoa as Affected by Different Levels of Irrigation and Plant Density. Iranian Journal of Field Crops Research, 21(1), 29-46. (In Persian).
  26. Mugabe, F. T., & Nyakatawa, E. Z. (2000). Effect of deficit irrigation on wheat and opportunities of growing wheat on residual soil moisture in southeast Zimbabwe. Agricultural Water Management, 46(2), 111-119.
  27. Nezamia, A., Khazaei, H.R., Boroumand Rezazadeh, Z., & Hosseini, A. (2008). Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert, 12(2), 99-104.
  28. Panda, R. K., Behera, S. K., & Kashyap, P. S. (2003). Effective management of irrigation water for wheat under stressed conditions. Agricultural Water Management, 63(1), 37–56.
  29. Pasban Eslam, B. (2011). Study of Possibility of Delayed Planting of Oilseed Rape (Brassica napus) in East Azarbaijan in Iran. Seed and Plant Production, 27(3), 269-284. (In Persian)
  30. Qadir, M., Boers, T. M., Schubert, S., Ghafoor, A., & Murtaza, G. (2003). Agricultural water management in water-starved countries: challenges and opportunities. Agricultural Water Management, 62(3), 165-185.
  31. Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2011). Water Relations and Transpiration of Quinoa (Chenopodium quinoa) Under Salinity and Soil Drying. Journal of Agronomy and Crop Science, 197(5), 348-360.
  32. Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138.
  33. Talebnejad, R., & Sepaskhah, A. R. (2015a). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225-238.
  34. Talebnejad, R., & Sepaskhah, A. R. (2015b). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177-188.
  35. Talebnejad, R., & Sepaskhah, A.R. (2016). Modification of Transient State Analytical Model under Different Saline Groundwater Depths, Irrigation Water Salinities and Deficit Irrigation for Quinoa. International Journal of Plant Production, 10(3), 365-389.
  36. Talebnejad, R., Bahrami, M., & Sepaskhah, A. R. (2022). Planting dates and irrigation regimes influence on growth and yield of quinoa (Chenopodium quinoa) in a semi-arid area. Iran Agricultural Research, 40(2), 103-120. (In Persian)
  37. Tavakkol Afshari, M., Nezami, A., Ahmadi-Lahijani, M. J., Nabati, J., & Karimzadeh Soureshjani, H. (2023). Effect of planting date and irrigation deficiency on the physiological, biochemical, and yield component of quinoa (Chenopodium quinoa Willd) in Mashhad. Environmental Stresses in Crop Sciences, 16(2), 403-418. (In Persian)
  38. Zhang, Y., Kendy, E., Qiang, Y., Changming, L., Yanjun, S., & Hongyong, S. (2004). Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agricultural Water Management, 64(2), 107-122.