Document Type : Research Paper
Authors
1 Associate Professor, Earth Sciences Department, Natural Sciences Faculty, University of Tabriz, Tabriz. Iran
2 MSc., Geology Department, Science Faculty, Urmia University, Urmia, Iran
3 Assistant Professor, Geology Department, Science faculty, Urmia University, Urmia. Iran
4 PhD candidate, Earth Sciences Department, Natural sciences Faculty, University of Tabriz, Tabriz, Iran
Abstract
Keywords
9. Aller, L., Bennet, T., Leher, H., Petty, R., J. & Hackett, G. (1987). DRASTIC: A Standardized system for evaluating groundwater pollution potential using hydro-geological setting. kerr Environmental Research Laboratory, U.S Environmental Protection Agency Report, (EPA/600/2-87/035).
10. Antonakos, A.K. & Lambrakis, N.i. (2007). Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates based on the drastic model, an example from NE Korinthia, Greece. Journal of Hydrology, 288-304.
11. Babiker, I.S., Mohamed, M. A. A., Hiyama, T. & Kato, K. (2005). A GIS-based DRASTIC model for assassing aquifer vulnerability in Kakamigahara heights, Gifu Prefecture, central Japan. Science of the Total Environment, 345(1-3), 127-140.
12. Chilton, P.J., Vlugman, A. & Foster, S. (1990). A groundwater pollution risk assessment for public water supply sources in Barbados, American, Water Resources Association International Conference on Tropical Hydrology and Caribbean Water resource, San Juan de Puerto Rico, 279-289.
13. Civita, M. (1990). Legenda unificata per le Carte della vulnerabilita dei corpi idrici sotterranei/ Unified legend for the aquifer pollution vulnerability Maps, Studi sulla Vulnerabilita degli Acqiferi, Pitagora Edite, Bologna.
14. Corniello, A., Ducci, D. & Napolitano, P. (1997). Comparison between parametric methods to evaluate aquifer pollution vulnerability using a GIS: An example in the Piana Campana. In Engineering Geology and the Envirnoment, Balkema, Rotterdam, The Netherlands, pp. 1721-1726.
15. Foster, S.S. (1987). Fundamental concept in aquifer vulnerability, pollution risk and protection strategy, in: Van Duijvenbooden W., Van Weageningh, H.G. (E.Ds.), vulnerability of soils and Groundwater to pollution, TNO Committee on Hydrological Research, The Hague, proceeding and Information, 38, 69-86.
16. Nadiri, A.A., Gharakhani, M. & Khatibi, R. (2017). Assessment of groundwater vulnerability using supervised combine fuzzy logic model. Environmental Science and Pollution Research Journal, 24(9), 8562-8577.
17. Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S. & Asghari Moghaddam, A. (2017a). Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Science of the Total Environment, 574, 691-706.
18. Nadiri, A.A., Sedghi, Z., Khatibi, R. & Gharakhani, M. (2017). Mapping vulnerability of multiple aquifer using multiple models and fuzzy logic to objectively derive model structures. Science of Total Environment Journal, 593-594, 75-90.
19. Panagopoulos, G., Antonakos, A. & Lambrakis, N. (2006). Optimization of DRASTIC model for groundwater vulnerability assessment, by the use of simple statistical methods and GIS. Hydrogeology Journal, 14, 894-911.
20. Ribeiro, L. (2000). Desenvolvimento de um índice para avaliar a susceptibilidade dos aquíferos à contaminação. Nota interna, (não publicada), ERSHA-CVRM, 8 p.
21. Stigter, T.Y., Riberiro, L. & Carvalho, D.A.M.M. (2006). Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination level in two agriculture regions in the south of Portugal. Hydrogel J, 14, 79-99.
22. Van Stempvoort, D., Ewert, L. & Wassenaar L. (1993). Aquifer vulnerability index: a GIS- compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal, 1, 25-37.
23. Vrba, J. & Zoporozec, A. (1994). Guidebook on mapping groundwater vulnerability, International Contributions to Hydrogeology. Verlag Heinz Heise GmbH and Co, KG.