Document Type : Research Paper
Authors
1
Department of Water Engineering, Faculty of Agriculture, Urmia University, Iran.
2
Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Iran.
3
Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Iran.
10.22059/jwim.2023.360144.1082
Abstract
One of the new ways to save water and reduce irrigation costs is the use of superabsorbents. Since the zeolite nanoparticle has a larger specific surface area, it can absorb water and nutrients and release them when the plant needs them. A two-year greenhouse experiment was conducted to investigate the effect of different levels of irrigation and nanozeolite on growth indicators, relative water content and ion leakage in basil plants. The experiment was done as chopped plots in the form of randomized complete blocks with three replications. The experimental treatments included irrigation levels at three levels (I1 = 0.75 FC or underwatering, FC = I2 or normal irrigation and I3 = 1.25 FC or overwatering) and nanozeolite superabsorbent levels in four levels (Z0 without superabsorbent, Z5 five grams of superabsorbent per kilogram of soil, Z10, 10 grams of superabsorbent per kilogram of soil and Z15 was 15 grams of superabsorbent per kilogram of soil). The results showed that with the increase in drought severity, diameter and height growth and other traits such as the number of leaves, leaf surface, weight of dry matter (biomass) of basil, the irrigation level decreased significantly by 75Percent, leading to a decrease in vegetative traits, a decrease in the relative water content of the leaves. and increased ionic leakage, also the results showed that the use of nanozeolite has a significant effect at the level of 1Percent on the investigated parameters, so that the use of this superabsorbent in the amount of 5 and 10 grams per kilogram of soil in all irrigation treatments (I1, I2, I3) ) by increasing the height of the plant stem by 22 and 30Percent in two consecutive years, as well as increasing the diameter of the basil stem by 33 and 29Percent respectively, increasing the number of lateral branches of basil in two years by 90 and 89Percent, respectively. The increase in the number of basil leaves was 49 and 76Percent, respectively, and the growth of the leaf surface was also increased by 25 and 19Percent, respectively. The dry weight of the plant increased by 40Percent and 30Percent, respectively, and the relative water content of the leaves increased by 14Percent and 7Percent in two consecutive years. In electrolyte leakage, contrary to the previous parameters, the application of superabsorbent reduced the ionic leakage of basil, but with the application of low irrigation, we saw an increase in this parameter. This study showed that there is a statistically significant difference (P>0.5) in the yield of the crop among treatments Z5, There is no Z10.
Keywords
Main Subjects