Groundwater Resources Withdrawal and Depletion Estimation Methods (Part 2: An Overview of the World and Iran Condition)

Document Type : Research Paper


Departement of Water Engineering and Management, Tarbiat Modares University, Tehran, Iran.



Groundwater resources are critical water resources for present and future generations. However, it has not been used sustainably in most of  Iran's plains, and due to the increase in population and food demand caused by it in the last century, it has been withdrawn more than in the past. The issue has been raised as a serious threat to the maintenance of livelihoods, the stability of local communities, and economic investments in the region. To prevent the continuation of this process, it seems necessary to identify, review, and formulate solutions. A variety of methods can be employed for estimating the withdrawal (country reports and hydrological modelling) and depletion (water balance methods, volume-based methods and indirect geodetic estimates or geodetic) amounts according to their limitations and characteristics. Based on literature reviews in two parts of the world and in Iran, the methods of estimation of withdrawal and depletion were evaluated to obtain a general understanding of its situation. Studies show that 800 and 184 billion cubic meters are respectively withdrawn and depleted on a global scale. In addition, there are 71 and 6.9 billion cubic meters (which is 10% and 4% of the global amount) for Iran, and this reflects Iran's dependence on groundwater resources. The dependency leads to the emergence of problems such as salinity and groundwater level depletion, subsidence and related social and economic issues. Moreover, most of the use of groundwater is linked to agriculture, and despite the decrease in its portion of withdrawals, the relationship between depletion and withdrawals has not changed.


Main Subjects

  1. Ashrafzadeh Afshar, A., Joodaki, G. R., & Sharifi, M. A. (2016). Evaluation of Groundwater Resources in Iran Using GRACE Gravity Satellite Data. Journal of Geomatics Science and Technology, 5(4), 73-84. (In Persian).
  2. Bierkens, M. F. P. (2015). Global hydrology 2015: State, trends, and directions. Water Resources Research, 51(7), 4923-4947.
  3. Cao, G., Zheng, C., Scanlon, B. R., Liu, J., & Li, W. (2013). Use of flow modeling to assess sustainability of groundwater resources in the North China Plain, 49(1).
  4. Cigna, F., & Tapete, D. (2022). Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of The Total Environment, 811, 152211.
  5. Danaei, G., Farzadfar, F., Kelishadi, R., Rashidian, A., Rouhani, O. M., Ahmadnia, S., Ahmadvand, A., Arabi, M., Ardalan, A., Arhami, M., Azizi, M. H., Bahadori, M., Baumgartner, J., Beheshtian, A., Djalalinia, S., Doshmangir, L., Haghdoost, A. A., Haghshenas, R., Hosseinpoor, A. R., … Malekzadeh, R. (2019). Iran in transition. In The Lancet (Vol. 393, Issue 10184, pp. 1984-2005).
  6. De Graaf, I. E. M., van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P. (2014). Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges. Advances in Water Resources, 64, 21-33.
  7. de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., & Bierkens, M. F. P. (2017). A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Advances in Water Resources, 102, 53-67.
  8. Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014). Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resources Research, 50(7), 5698-5720.
  9. Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. 49(4), 2110-2118.
  10. Foster, S., & Loucks, D. (2006). Non-renewable groundwater resources: a guidebook on socially-sustainable management for water-policy makers. Retrieved from
  11. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2015). The global volume and distribution of modern groundwater. Nature Geoscience 2015 9:2, 9(2), 161-167.
  12. Gleeson, T., Wada, Y., Bierkens, M. F. P., & Van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200.
  13. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818.
  14. Gornitz, V., Rosenzweig, C., & Hillel, D. (1994). Is sea level rising or falling? Nature 1994 371:6497, 371(6497), 481-481.
  15. Hanasaki, N., Yoshikawa, S., Pokhrel, Y., & Kanae, S. (2018). A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 22(1), 789-817.
  16. Hoekstra, A. Y., & Chapagain, A. K. (2006). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35-48.
  17. Jakovovic, D., Werner, A. D., de Louw, P. G. B., Post, V. E. A., & Morgan, L. K. (2016). Saltwater upconing zone of influence. Advances in Water Resources, 94, 75-86.
  18. Joodaki, G., Wahr, J., & Swenson, S. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679-2692.
  19. Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17).
  20. Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal, 13(1), 317-320.
  21. Korzun, V. I. (Valentin I., & Mezhduvedomstvennyĭ komitet SSSR po mezhdunarodnomu gidrologicheskomu desi︠a︡tiletii︠u︡. (1978). World water balance and water resources of the Earth.
  22. Mabrouk, M., Jonoski, A., Oude Essink, G. H. P., & Uhlenbrook, S. (2018). Impacts of Sea Level Rise and Groundwater Extraction Scenarios on Fresh Groundwater Resources in the Nile Delta Governorates, Egypt. Water 2018, Vol. 10, Page 1690, 10(11), 1690.
  23. Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4(4), 315-328.
  24. Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies, 49(6), 997-1016.
  25. Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environmental Systems Research, 8(1), 1–10.
  26. Margat, J., & van der Gun, J. (2013). Groundwater around the World: A Geographic Synopsis. Groundwater Around the World: A Geographic Synopsis, 1-343.
  27. Mazaheri, M., & Abdolmanafi, N. (2016). Investigating the water crisis and its consequences in the country. Retrieved from (In Persian).
  28. Nace, R. L. (1969). World water inventory and control. In Introduction to Geographical Hydrology: Spatial Aspects of the Interactions between Water Occurrence and Human Activity (Vol. 4, pp. 8-19). Taylor and Francis.
  29. Negahdary, M. (2022). Shrinking aquifers and land subsidence in Iran. Science, 376(6599), 1279.
  30. Noori, R., Maghrebi, M., Mirchi, A., Tang, Q., Bhattarai, R., Sadegh, M., Noury, M., Haghighi, A. T., Kløve, B., & Madani, K. (2021). Anthropogenic depletion of Iran’s aquifers. Proceedings of the National Academy of Sciences of the United States of America, 118(25), e2024221118.
  31. Perry, C. S., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water ? a review of evidence: Discussion paper on irrigation and sustainable water resources management in the Near East and North Africa. Retrieved
  32. Pokhrel, Y. N., Koirala, S., Yeh, P. J. F., Hanasaki, N., Longuevergne, L., Kanae, S., & Oki, T. (2015). Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resources Research, 51(1), 78-96.
  33. Post, V. E. A., Oude Essink, G., Szymkiewicz, A., Bakker, M., Houben, G., Custodio, E., & Voss, C. (2018). Celebrating 50 years of SWIMs (Salt Water Intrusion Meetings). Hydrogeology Journal, 26(6), 1767-1770.
  34. Postel, S. (1999). Pillar of sand : can the irrigation miracle last? In Worldwatch book . W.W. Norton.
  35. Rahmani, A., Bolourchi, M. J., Shahbazi, R., Rahmani, H., & Khosroshahi, M. (2020). Land subsidence: Part 1 (causes and factors). Iran Nature, 4(6), 77-91. (In Persian).
  36. Riahi Zamin, R., TORKAMANI, J., & Shajari, S. (2019). Externalities of groundwater overdraft on the supply of agricultural products: A Case Study of wheat in Marvdasht (Vol. 11, Issue 141, pp. 263–275). JOURNAL OF Agricultural Economics Research. (In Persian)
  37. Richey, A. S., Thomas, B. F., Lo, M. H., Famiglietti, J. S., Swenson, S., & Rodell, M. (2015). Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resources Research, 51(7), 5198-5216.
  38. Rodenburg, E. (1994). Man-made lakes and sea-level rise. Nature, 370(6487), 258.
  39. Ruddell, B. L. (2018). HESS Opinions: How should a future water census address consumptive use? (And where can we substitute withdrawal data while we wait?). Hydrology and Earth System Sciences, 22(10), 5551-5558.
  40. Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades? Journal of Hydrology: Regional Studies, 41, 101095.
  41. Safdari, Z., Nahavandchi, H., & Joodaki, G. (2022). Estimation of Groundwater Depletion in Iran’s Catchments Using Well Data. Water (Switzerland), 14(1), 131.
  42. Sato, C., Haga, M., & Nishino, J. (2006). Land Subsidence and Groundwater Management in Tokyo.
  43. Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9320-9325.
  44. Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4).
  45. Shah, T. (2005). Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Science and Technology, 51(8), 27-37.
  46. Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation - A global inventory. Hydrology and Earth System Sciences, 14(10), 1863-1880.
  47. Steward, D. R., & Allen, A. J. (2016). Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agricultural Water Management, 170, 36-48.
  48. Tallaksen, L., & Lanen, H. V. (2004). Hydrological drought : processes and estimation methods for streamflow and groundwater.
  49. United Nations. (2014). World urbanization prospects: The 2014 revision [Highlights]. Retrieved
  50. van Asselen, S., Stouthamer, E., & van Asch, T. W. J. (2009). Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling. Earth-Science Reviews, 92(1-2), 35-51.
  51. Van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y., & Tregoning, P. (2014). A global water cycle reanalysis (2003-2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrology and Earth System Sciences, 18(8), 2955-2973.
  52. van Engelen, J., Oude Essink, G. H. P., Kooi, H., & Bierkens, M. F. P. (2018). On the origins of hypersaline groundwater in the Nile Delta aquifer. Journal of Hydrology, 560, 301-317.
  53. van Weert, F., van der Gun, J., & Reckman, J. (2009). Global Overview of Saline Groundwater Occurrence and Genesis (Report number: GP 2009-1). Utrecht IGRAC - U. N. Int. Groundw. Resour. Assess. Cent., 1-32.
  54. (1933). History of Natural Water. History of the Minerals of the Earth’s Crust 2 Leningrad.
  55. Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C. De, Rodell, M., Swenson, S. C., Voss, C. :, Famiglietti, J. S., Lo, M., De Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2), 904-914.
  56. Wada, Y. (2016). Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surveys in Geophysics, 37(2), 419-451.
  57. Wada, Y., & Bierkens, M. F. P. (2014). Sustainability of global water use: past reconstruction and future projections. Environmental Research Letters, 9(10), 104003.
  58. Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., Van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., & Wiberg, D. (2016). Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9(1), 175-222.
  59. Wada, Y., Lo, M. H., Yeh, P. J. F., Reager, J. T., Famiglietti, J. S., Wu, R. J., & Tseng, Y. H. (2016). Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change, 6(8), 777-780.
  60. Wada, Y., van Beek, L. P. H., & Bierkens, M. F. P. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48, 0-06.
  61. Wada, Y., Van Beek, L. P. H., Sperna Weiland, F. C., Chao, B. F., Wu, Y. H., & Bierkens, M. F. P. (2012). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39(9).
  62. Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20).
  63. Wada, Y., Van Beek, L. P. H., Wanders, N., & Bierkens, M. F. P. (2013). Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8(3), 034036.
  64. Wada, Y., Wisser, D., & Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 5(1), 15-40.
  65. Werner, A. D., Jakovovic, D., & Simmons, C. T. (2009). Experimental observations of saltwater up-coning. Journal of Hydrology, 373(1-2), 230-241.
  66. (2017). Water Resources Management Company. Retrieved (In Persian)
  67. Yoshikawa, S., Cho, J., Yamada, H. G., Hanasaki, N., & Kanae, S. (2014). An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: Rivers and reservoirs (1960–2050). Hydrology and Earth System Sciences, 18(10), 4289-4310.
  68. Zarch, M. A. A., Malekinezhad, H., Mobin, M. H., Dastorani, M. T., & Kousari, M. R. (2011). Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resources Management, 25(13), 3485-3504.
  69. Zektser, Igor S., & Everett, L. G. (2004). Groundwater resources of the world and their use. Retrieved from