Investigating the efficiency of the multi-model ensemble system to improve the forecast skill of the numerical precipitation models

Document Type : Research Paper

Authors

1 Department of Water Engineering, Faculty of Agricultural Technology, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.

2 Department of Environmental Planning and Management, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.

3 Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia.

10.22059/jwim.2023.350086.1025

Abstract

The lead-time and accuracy of the precipitation forecasts have a substantial influence on the flood forecast and warning systems. The application of Ensemble Precipitation Forecasts (EPFs) derived from numerical precipitation models has been developed due to their impact on increasing flood lead-time. This research aims to improve the skill of numerical precipitation models using post-processing techniques. In this regard, EPFs of three meteorological models, e.g., NCEP, UKMO, and KMA, were extracted for sex precipitation events leading to flood in the Dez river basin during 2013-2019. The statistical approaches and data-driven model were applied to post-process the EPFs. For this purpose, the raw forecast of every single model was corrected using linear and power regression models. Then, the corrected output of single models was combined using the proposed model of Group Method of Data Handling (GMDH). The results indicated that Power Regression Model (PRM) outperformed the linear models to correct raw forecasts. After correction of models' output, more accurate results were obtained by NCEP and UKMO models. Moreover, the Multi-Model Ensemble (MME) system constructed by the GMDH model (MME_GMDH) had a great effect on the skill of numerical precipitation models, so that the Nash–Sutcliffe and normalized error (NRMSE) efficiency criteria for MME_GMDH respectively were improved on average 23% and 11% in comparison with the PRM. A comparative assessment of the discrimination capability of MME with single ensemble models using ROC curve at the thresholds of 2.5 and 10 mm represented a higher discrimination ability by MME_GMDH for both thresholds. Post-processed EPFs exert as a reliable input to the hydrological models for extreme events forecast.

Keywords

Main Subjects


  1. Adnan, R. M., Liang, Z., Parmar, K. S., Soni, K., & Kisi, O. (2021). Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Computing and Applications33(7), 2853-2871.
  2. Aminyavari, S., & Saghafian, B. (2019). Probabilistic streamflow forecast based on spatial post-processing of TIGGE precipitation forecasts. Stochastic Environmental Research and Risk Assessment33(11), 1939-1950.
  3. Aminyavari, S., Saghafian, B., & Sharifi, E. (2019). Assessment of precipitation estimation from the NWP models and satellite products for the spring 2019 severe floods in Iran. Remote Sensing11(23), 2741.
  4. Chang, F. J., & Hwang, Y. Y. (1999). A self‐organization algorithm for real‐time flood forecast. Hydrological processes13(2), 123-138.
  5. Chen, C. H., Chung, K. S., Yang, S. C., Chen, L. H., Lin, P. L., & Torn, R. D. (2021). Sensitivity of forecast uncertainty to different microphysics schemes within a convection-allowing ensemble during SoWMEX-IOP8. Monthly Weather Review149(12), 4145-4166.
  6. Chen, M., Huang, Y., Li, Z., Larico, A. J. M., Xue, M., Hong, Y., ... & Morales, I. Y. (2022). Cross-Examining Precipitation Products by Rain Gauge, Remote Sensing, and WRF Simulations over a South American Region across the Pacific Coast and Andes. Atmosphere13(10), 1666.
  7. D’onofrio, A., Boulanger, J. P., & Segura, E. C. (2010). CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation. Climatic Change98(3), 405-427.
  8. Du, Y., Wang, Q. J., Wu, W., & Yang, Q. (2022). Power transformation of variables for post-processing precipitation forecasts: regionally versus locally optimized parameter values. Journal of Hydrology, 127912.
  9. Fallah Kalaki, M., Delavar, M., & Farokhnia, A. (2020). Continuous and probabilistic Assessment of Long-term Precipitation Forecast of North American Multi Model Ensemble (Case Study: Karkheh Dam Basin). Iran-Water Resources Research16(1), 59-71. (In Persian)
  10. Gilewski, P. (2022). Application of Global Environmental Multiscale (GEM) Numerical Weather Prediction (NWP) Model for Hydrological Modeling in Mountainous Environment. Atmosphere13(9), 1348.
  11. Hagedorn, R., Doblas-Reyes, F. J., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus A: Dynamic Meteorology and Oceanography57(3), 219-233.
  12. Hapuarachchi, H. A. P., Wang, Q. J., & Pagano, T. C. (2011). A review of advances in flash flood forecasting. Hydrological processes25(18), 2771-2784.
  13. Jahanara, A. A., & Khodashenas, S. R. (2019). Prediction of ground water table using NF-GMDH based evolutionary algorithms. KSCE Journal of Civil Engineering23(12), 5235-5243.
  14. Jain, S.K., Mani, P., Jain, S.K., Prakash, P., Singh, V.P., Tullos, D., Kumar, S., Agarwal, S.P. and Dimri, A.P., (2018). A Brief review of flood forecasting techniques and their applications. International Journal of River Basin Management16(3), 329-344.
  15. Javanshiri, Z., Fathi, M., & Mohammadi, S. A. (2021). Comparison of the BMA and EMOS statistical methods for probabilistic quantitative precipitation forecasting. Meteorological Applications28(1), e1974.
  16. Jha, S. K., Shrestha, D. L., Stadnyk, T. A., & Coulibaly, P. (2018). Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment. Hydrology and Earth System Sciences22(3), 1957-1969.
  17. Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment193(4), 1-20.
  18. Krishnamurti, T. N., Sagadevan, A. D., Chakraborty, A., Mishra, A. K., & Simon, A. (2009). Improving multimodel weather forecast of monsoon rain over China using FSU superensemble. Advances in Atmospheric Sciences26(5), 813-839.
  19. Liguori, S., Rico-Ramirez, M. A., Schellart, A. N. A., & Saul, A. J. (2012). Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research103, 80-95.
  20. Liu, Y. Y., Li, L., Liu, Y. S., Chan, P. W., Zhang, W. H., & Zhang, L. (2021). Estimation of precipitation induced by tropical cyclones based on machine‐learning‐enhanced analogue identification of numerical prediction. Meteorological Applications28(2), e1978.
  21. Maddah, M. A., Akhoond-Ali, A. M., Ahmadi, F., Ghafarian, P., & Rusin, I. N. (2021). Forecastability of a heavy precipitation event at different lead-times using WRF model: the case study in Karkheh River basin. Acta Geophysica69(5), 1979-1995.
  22. Malekmohammadi, B., Zahraie, B. and Kerachian, R., 2010. A real-time operation optimization model for flood management in river-reservoir systems. Natural hazards53(3), 459-482.
  23. Manzanas, R., Gutiérrez, J. M., Bhend, J., Hemri, S., Doblas-Reyes, F. J., Torralba, V., ... & Brookshaw, A. (2019). Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset. Climate Dynamics, 53(3), 1287-1305.
  24. Medina, H., Tian, D., Marin, F. R., & Chirico, G. B. (2019). Comparing GEFS, ECMWF, and post-processing methods for ensemble precipitation forecasts over Brazil. Journal of Hydrometeorology, 20(4), 773-790.
  25. Mehri, Y., Soltani, J., & Khashehchi, M. (2019). Predicting the coefficient of discharge for piano key side weirs using GMDH and DGMDH techniques. Flow Measurement and Instrumentation65, 1-6.
  26. Osman, M., Coelho, C. A., & Vera, C. S. (2021). Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression. Climate Dynamics57(9), 2889-2904.
  27. Pakdaman, M., Babaeian, I., & Bouwer, L. M. (2022). Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms. Water14(17), 2632.
  28. Roy, J., & Saha, S. (2022). Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach. Artificial Intelligence in Geosciences3, 28-45.
  29. Saedi, A., Saghafian, B., Moazami, S., & Aminyavari, S. (2020). Performance evaluation of sub‐daily ensemble precipitation forecasts. Meteorological Applications27(1), e1872.
  30. Safari, M. J. S., Ebtehaj, I., Bonakdari, H., & Es-haghi, M. S. (2019). Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. Journal of Hydrology577, 123951.
  31. Samadi, A., Sadrolashrafi, S. S., & Kholghi, M. K. (2019). Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: A case study for the Dez River Basin. Physics and Chemistry of the Earth, Parts A/B/C109, 9-25.
  32. Shaghaghi, S., Bonakdari, H., Gholami, A., Ebtehaj, I., & Zeinolabedini, M. (2017). Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design. Applied Mathematics and Computation313, 271-286.
  33. Sikder, M. S., & Hossain, F. (2018). Sensitivity of initial‐condition and cloud microphysics to the forecasting of monsoon rainfall in South Asia. Meteorological Applications25(4), 493-509.
  34. Tanhapour, M., Hlavčová, K., Soltani, J., Liová, A., Malekmohammadi, B. (2022). Sensitivity analysis and assessment of the performance of the HBV hydrological model for simulating reservoir inflow hydrograph. In: Proceeding of 16th annual international scientific conference, 1-3 June, Banská Štiavnica, Slovakia, 115-124.
  35. Tao, Y., Duan, Q., Ye, A., Gong, W., Di, Z., Xiao, M., & Hsu, K. (2014). An evaluation of post-processed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. Journal of hydrology519, 2890-2905.
  36. Theocharides, S., Makrides, G., Livera, A., Theristis, M., Kaimakis, P., & Georghiou, G. E. (2020). Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Applied Energy268, 115023.
  37. Verkade, J. S., Brown, J. D., Reggiani, P., & Weerts, A. H. (2013). Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. Journal of Hydrology501, 73-91.
  38. Walton, R., Binns, A., Bonakdari, H., Ebtehaj, I. and Gharabaghi, B., (2019). Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling. Journal of Hydrology, 575, 671-689
  39. Wang, H., Hu, Y., Guo, Y., Wu, Z., & Yan, D. (2022). Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of Zhengzhou city. Journal of Hydrology: Regional Studies39, 100985.
  40. Wei, X., Sun, X., Sun, J., Yin, J., Sun, J., & Liu, C. (2022). A Comparative Study of Multi-Model Ensemble Forecasting Accuracy between Equal-and Variant-Weight Techniques. Atmosphere13(4), 526.
  41. Wu, W., Emerton, R., Duan, Q., Wood, A.W., Wetterhall, F. and Robertson, D.E., (2020). Ensemble flood forecasting: Current status and future opportunities. Wiley Interdisciplinary Reviews: Water, 7(3), 1432.
  42. Zakeri, Z., azadi, M., & sahraeiyan, F. (2014). Verification of WRF forecasts for precipitation over Iran in the period Feb-May 2009. Nivar38(87-86), 3-10. (In Persian)