Spatial gradient modeling of water yield service using InVEST in northern sub-basins of ‎Kerman province

Document Type : Research Paper


1 Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran.

2 Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

3 Department of Environmental Sciences & Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran‎.‏‎

4 Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.



The ecosystem service of water yield is affected by damaging human activities, and the estimation of its quantity ‎through modeling is the first step to sustainable management of this service. This research applied the InVEST ‎hydrological model to quantify the ecosystem service of water yield and its valuation in the northern arid and semi-arid ‎sub-basins of Kerman province. First, for modelling the water yield were entered the maps such as annual average ‎precipitation, depth of root limiting layers, plant accessible water capacity, land use/land cover (LULC), and the ‎boundaries of the basin and sub-basins, and the approximate amount of actual evapotranspiration (AET) in each pixel. ‎Then maps of estimated water yield in each pixel was obtained. The model calculated 5112.43 million cubic meters of ‎water with a value of more than 418500 billion Rails are produced annually, the highest amount of water yield is in sub-‎basin one (Abargho-Sirjan) with 2103 million cubic meters per year and the lowest amount of water yield in sub-region ‎three (north Kavir-e lut) with the amount of 741.84 MCM. The results showed that the value of supply the ‎water yield service is strongly influenced by the spatial changes of LULC. Dense range lands produce 27630.7 MCM of ‎water per hectare, and each hectare of dense forest can produce 1104.6 MCM of water. Therefore the role of vegetation ‎shows the influence of water infiltration and feeding of aquifers in high areas. The results of this study can be used in ‎spatial planning to reduce the destructive effects of floods and droughts, prevent land degradation and develop vegetation, ‎feed aquifers, and also estimate damages in green accounting.‎


Main Subjects

  1. Adelisardou, F., Jafari, H.R., & Malekmohammadi, B. (2021). Impacts of land use and land cover change on the interactions among multiple soil-dependent ecosystem services (case study: Jiroft plain, Iran). Environ Geochem Health, 43, 3977-3996.
  2. Allen, R.G., Pereira, L.S., Raes D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, FAO, Rome.
  3. Bagstad, K.J., Villa, F., Batker, D., Harrisoncox, J., Voigt, B., & Johnson, G.W. (2015). From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol Soc, 19(2), 64-69.
  4. Balali, H., & Kasbian Lal, F. (2022). Economic Valuation of Groundwater in Agriculture Sector (Case Study: Hamedan-Bahar Plain). Journal Of Agricultural Economics and Development, 36(1), 37-48. (In Persian).
  5. Balist, J., Malekmohammadi, B., & Jafari, H.R. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12,
  6. Benra, F., De Frutos, A., Gaglio, M., Álvarez-Garretón, C., Felipe-Lucia, M., & Bonn, A. (2021). Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling & Software, 138, 104982.
  7. Birkhofer, K., Diehl, E., Andersson, J., Ekroos, J., Früh-Müller, A., Machnikowski, F., & Smith, H. G. (2015). Ecosystem services-current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution, 2, 87.
  8. Bozorg-Haddad, O., Dehghan, P., Zareie, S., and Loáiciga, H. A. (2020) System dynamics applied to water management in lakes. and Drain., 69, 956- 966.
  9. Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia108, 583-595.
  10. Costanza, R., d'Arge, R., De Groot, R., Farberk, S., Grasso, M., Limburg, K., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253-260.
  11. Cui, F., Wang, B., Zhang, Q., Tang, H., De Maeyer, P., Hamdi, R., & Dai, L. (2021). Climate change versus land-use change-What affects the ecosystem services more in the forest-steppe ecotone?. Science of the Total Environment, 759, 143525.
  12. Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., & Maghsood, F. F. (2021). Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621.
  13. Eslami, A., Anvari, S., Karimi, N., & Mohamadi, S. (2022). Application of pixel-based and object-based approaches for LULC mapping in Jiroft region, SE Iran. ECOPERSIA, 10(1), 71-83.
  14. Farzane Gholami, F. (2013). Valuation of water resources in parts of the province Kerman, using table input-occupancy-output. M.Sc. Thesis, Shahid Bahonar University of Kerman, Iran. (In Persian).
  15. Fischer, G., van Velthuizen, H., & Shah, M. (2008). Nachtergaele. F., Prieler., S., Velthuizen, HT v., Verelst., L., and D. Wiberg: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008), edited by: IIASA, Laxenburg, Austria, FAO, Rome, Italy.
  16. Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H.T., Verelst, L., & Wiberg, D. (2008). Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA: Laxenburg, Austria; FAO: Rome, Italy.
  17. Ghermandi, A., Nunes, P.A., Portela, R., Nalini, R., & Teelucksingh, S. S. (2010). Recreational, cultural and aesthetic services from estuarine and coastal ecosystems. FEEM Working Paper No. 121.2009,
  18. Ghobadi, S., & Moridi, A. (2022). Economic valuation of water. Water and Irrigation Management, Articles in Press, doi: 10.22059/jwim.2022.342815.992. (In Persian).
  19. Haghdadi, M., Heshmati, Gh.A., & Azimi, M.S. (2018). Assessment of water yield service on the basis of InVEST tool (Case study: Delichai watershed). J of Water and Soil Conservation, 25(4), 275-290. (In Persian).
  20. Jafarzadeh, A. A., Mahdavi, A., FallahShamsi, R., & Yousefpour, R. (2019). Annual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran). Journal of Rangeland Science, 9(1), 1-12.
  21. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., Brumby, S.P. (2021). Global land use/land cover with sentinel 2 anddeep learning; IEEE: Manhattan, NY, USA: pp. 4704-4707.
  22. Liang, J., Li, S., Li, X., Li, X., Liu, Q., Meng, Q., & Li, J. (2021). Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279, 123851.
  23. López-Cubillos, S., Runting, R. K., Suárez-Castro, A. F., Williams, B. A., Armenteras, D., Ochoa-Quintero, J. M., & McDonald-Madden, E. (2022). Spatial prioritization to achieve the triple bottom line in Payment for ecosystem services design. Ecosystem Services, 55, 101424.
  24. Ma, S., Qiao, Y. P., Wang, L. J., & Zhang, J. C. (2021). Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. Forest Ecology and Management, 482, 118856.
  25. Management and Planning Organization of Kerman province. (2018). A selection of economic, social and cultural indices and indicators of Kerman province, Fall 2018. P. 43. (In Persian)
  26. Mansouri Daneshvar, M.R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environ Syst Res,8 (7), 1-10.
  27. Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being. General Synthesis: a Report of the Millennium Ecosystem Assessment. Washington, DC: Island Press.
  28. Munoth, P., & Goyal, R. (2020). Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin India. Int J River Basin Manage, 18(2), 177-189.
  29. Pirikiya, M., Fallah, A., Amirnejad, H., & Mohamadi, J. (2021). Economic valuation of water production service in forest ecosystems (case study: Darabkola watershed). Ecology of Iranian Forest, 29 (18), 22-33. (In Persian).
  30. Plummer, M.L. (2009). Assessing benefit transfer for the valuation of ecosystem services. Front Ecol Environ., 7(1), 38-45, doi: 10.1890/080091.
  31. Resende, F. M., Cimon-Morin, J., Poulin, M., Meyer, L., Joner, D. C., & Loyola, R. (2021). The importance of protected areas and Indigenous lands in securing ecosystem services and biodiversity in the Cerrado. Ecosystem Services, 49, 101282.
  32. Sahidasht, A., & Abasnejad, A. (2011). Providing management solutions for underground water resources in the plains of Kerman province. Geotechnical Geology, 7(2), 131-146. (In Persian).
  33. Sharafatmandrad, M., & Khosravi Mashizi, A. (2021). Temporal and spatial assessment of supply and demand of the water-yield ecosystem service for water scarcity management in arid to semi-arid ecosystems. Water Resources Management, 35(1), 63-82.
  34. Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., ..., & Douglass, J. (2018). InVEST 3.2. 0 user’s guide. The Natural Capital Project.
  35. Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., & Verburg, P. (2020). Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degradation Development, 31, 1252-1264.
  36. Song, W., & Deng, X. (2017). Land-use/land-cover change and ecosystem service provision in China. Sci Total Environ., 576, 705-719.
  37. Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., & Zhang, Y. (2015). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. For Ecol Manage, 353, 269-279.
  38. Tahiru, A.A., Doke, D.A., & Baatuuwie, B.N. (2020). Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region. Ghana. Appl Water Sci., 10, 198.
  39. Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Sharp, R., Nelson, E., ..., & Bernhardt, J. (2011). InVEST 2.2.2 user's guide: integrated valuation of ecosystem services and tradeoffs. The Natural Capital Project.
  40. (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Malta: Progress Press.
  41. Wu, C., Qiu, D., Gao, P., Mu, X., & Zhao, G. (2022). Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China. Journal of Arid Land, 14(4), 426-440.
  42. Yang, J., Xie, B., Zhang, D., & Tao, W. (2021). Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environmental Earth Sciences, 80(3), 1-12.
  43. Yang, X., Chen, R., Meadows, M. E., Ji, G., & Xu, J. (2020). Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply20(3), 1035-1045.
  44. Zhang, L. Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 701-708.
  45. Zhao, Y.R., Zhou, J.J., Lei, L., Xiang, J., Huang, M.H., Feng, W., Zhu, G.F., Wei, W., & Wang, J.A. (2019). Identification of water yield driving factors in the upper reaches of Shiyang River based on InVEST model. Chin J Ecol., 38(12), 3789-3799.