مدلسازی گرادیان مکانی خدمت اکوسیستمی تولید آب با ‏InVEST‏ در‎ ‎زیرحوزه‌های شمالی استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران.

2 گروه مهندسی طبیعت، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

3 گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران.

4 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران.

10.22059/jwim.2023.349742.1024

چکیده

خدمت اکوسیستمی تولید آب متاثر از فعالیت‌های مخرب انسانی است و اولین گام جهت مدیریت پایدار این خدمت، برآورد کمیت آن ‏از طریق مدل‌سازی است. پژوهش‎ ‎حاضر‎ ‎با‎ ‎هدف‎ ‎به‌کارگیری‎ ‎مدل هیدرولوژیک‎ InVEST ‎در‎ ‎کمی‌سازی خدمت اکوسیستمی‎ ‎تولید آب و ‏ارزشگذاری آن در زیرحوزه‌های خشک و نیمه‌خشک شمالی استان کرمان‎ ‎انجام‎ ‎شد‎.‎‏ ابتدا، نقشه‌های‎ ‎میانگین‎ ‎بارندگی سالیانه،‎ ‎عمق ‏لایه‌های محدودکنندۀ‎ ‎ریشه، مقدار آب‎ ‎در‎ ‎دسترس‎ ‎گیاه، کاربری اراضی/پوشش سطح زمین (‏LULC‏) و‎ ‎مرز‎ ‎حوزه‎ ‎و زیرحوزههای منطقه‎ ‎به‌عنوان‎ ‎ورودیهای‎ ‎مدل وارد‎ ‎شدند‎ ‎و نقشه مقدار‎ ‎تقریبی‎ ‎تبخیروتعرق‎ ‎واقعی (‏AET‏) در‎ ‎هر پیکسل و نقشۀ‎ ‎تولید‎ ‎آب برآورد شده‎ ‎در‎ ‎هر ‏پیکسل‎ ‎به‌دست‎ ‎آمد.‏‎ ‎براساس محاسبات‎ ‎انجام شده توسط‎ ‎مدل‎ ‎در‎ ‎منطقه مورد نظر، سالانه‎ ‎‏43/5112 میلیون مترمکعب آب با ارزشی بیش از ‏‏418500 میلیارد ریال تولید‎ ‎می‌شود‎ ‎که بیشترین‎ ‎مقدار‎ ‎تولید‎ ‎آب،‎ ‎در‎ ‎زیرحوزه یک (ابرقو-سیرجان)‏‎ ‎با‎ ‎‏ 2103 میلیون مترمکعب‎ ‎در‎ ‎سال‎ ‎و‎ ‎کمترین‎ ‎میزان‎ ‎تولید‎ ‎آب،‎ ‎در‎ ‎زیرحوزه سه (کویرلوت شمالی) با مقدار 84/741 میلیون مترمکعب است‎.‎‏ نتایج نشان داد که سطح عرضه ‏خدمت تولید آب به‌شدت تحت تاثیر تغییرات مکانی ‏LULC‏ است به طوری‌که در مجموع، اراضی مرتعی پرتراکم 7/27630 MCM در هکتار و همچنین هر هکتار از جنگل پرتراکم، قادر به تولید 6/1104 MCM آب است که نقش پوشش گیاهی را ‏در نفوذ آب و تغذیه آبخوان‌ها در مناطق مرتفع نشان میدهد. نتایج این مطالعه در برنامه‌ریزی مکانی جهت کاهش اثرات مخرب سیل و ‏خشکسالی، جلوگیری از تخریب اراضی و توسعه پوشش گیاهی، تغذیه آبخوان‌ها و همچنین برآورد خسارات در حسابداری سبز قابل ‏کاربرد است. ‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial gradient modeling of water yield service using InVEST in northern sub-basins of ‎Kerman province

نویسندگان [English]

  • Malihe Erfani 1
  • Sharif Joorabian shooshtari 2
  • Tahere Ardakani 3
  • Fatemeh Jahanishakib 4
1 Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran.
2 Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
3 Department of Environmental Sciences & Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran‎.‏‎
4 Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
چکیده [English]

The ecosystem service of water yield is affected by damaging human activities, and the estimation of its quantity ‎through modeling is the first step to sustainable management of this service. This research applied the InVEST ‎hydrological model to quantify the ecosystem service of water yield and its valuation in the northern arid and semi-arid ‎sub-basins of Kerman province. First, for modelling the water yield were entered the maps such as annual average ‎precipitation, depth of root limiting layers, plant accessible water capacity, land use/land cover (LULC), and the ‎boundaries of the basin and sub-basins, and the approximate amount of actual evapotranspiration (AET) in each pixel. ‎Then maps of estimated water yield in each pixel was obtained. The model calculated 5112.43 million cubic meters of ‎water with a value of more than 418500 billion Rails are produced annually, the highest amount of water yield is in sub-‎basin one (Abargho-Sirjan) with 2103 million cubic meters per year and the lowest amount of water yield in sub-region ‎three (north Kavir-e lut) with the amount of 741.84 MCM. The results showed that the value of supply the ‎water yield service is strongly influenced by the spatial changes of LULC. Dense range lands produce 27630.7 MCM of ‎water per hectare, and each hectare of dense forest can produce 1104.6 MCM of water. Therefore the role of vegetation ‎shows the influence of water infiltration and feeding of aquifers in high areas. The results of this study can be used in ‎spatial planning to reduce the destructive effects of floods and droughts, prevent land degradation and develop vegetation, ‎feed aquifers, and also estimate damages in green accounting.‎

کلیدواژه‌ها [English]

  • Arid and semi-arid regions
  • Economic valuation
  • Ecosystem service
  • modeling
  1. Adelisardou, F., Jafari, H.R., & Malekmohammadi, B. (2021). Impacts of land use and land cover change on the interactions among multiple soil-dependent ecosystem services (case study: Jiroft plain, Iran). Environ Geochem Health, 43, 3977-3996. https://doi.org/10.1007/s10653-021-00875-5.
  2. Allen, R.G., Pereira, L.S., Raes D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, FAO, Rome.
  3. Bagstad, K.J., Villa, F., Batker, D., Harrisoncox, J., Voigt, B., & Johnson, G.W. (2015). From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol Soc, 19(2), 64-69. https://doi.org/10.5751/ES-06523-190264.
  4. Balali, H., & Kasbian Lal, F. (2022). Economic Valuation of Groundwater in Agriculture Sector (Case Study: Hamedan-Bahar Plain). Journal Of Agricultural Economics and Development, 36(1), 37-48. (In Persian).
  5. Balist, J., Malekmohammadi, B., & Jafari, H.R. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12, https://doi.org/10.1007/s13201-021-01545-8.
  6. Benra, F., De Frutos, A., Gaglio, M., Álvarez-Garretón, C., Felipe-Lucia, M., & Bonn, A. (2021). Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling & Software, 138, 104982.
  7. Birkhofer, K., Diehl, E., Andersson, J., Ekroos, J., Früh-Müller, A., Machnikowski, F., & Smith, H. G. (2015). Ecosystem services-current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution, 2, 87.
  8. Bozorg-Haddad, O., Dehghan, P., Zareie, S., and Loáiciga, H. A. (2020) System dynamics applied to water management in lakes. and Drain., 69, 956- 966. https://doi.org/10.1002/ird.2470.
  9. Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia108, 583-595.
  10. Costanza, R., d'Arge, R., De Groot, R., Farberk, S., Grasso, M., Limburg, K., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253-260.
  11. Cui, F., Wang, B., Zhang, Q., Tang, H., De Maeyer, P., Hamdi, R., & Dai, L. (2021). Climate change versus land-use change-What affects the ecosystem services more in the forest-steppe ecotone?. Science of the Total Environment, 759, 143525.
  12. Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., & Maghsood, F. F. (2021). Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621.
  13. Eslami, A., Anvari, S., Karimi, N., & Mohamadi, S. (2022). Application of pixel-based and object-based approaches for LULC mapping in Jiroft region, SE Iran. ECOPERSIA, 10(1), 71-83.
  14. Farzane Gholami, F. (2013). Valuation of water resources in parts of the province Kerman, using table input-occupancy-output. M.Sc. Thesis, Shahid Bahonar University of Kerman, Iran. (In Persian).
  15. Fischer, G., van Velthuizen, H., & Shah, M. (2008). Nachtergaele. F., Prieler., S., Velthuizen, HT v., Verelst., L., and D. Wiberg: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008), edited by: IIASA, Laxenburg, Austria, FAO, Rome, Italy.
  16. Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H.T., Verelst, L., & Wiberg, D. (2008). Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA: Laxenburg, Austria; FAO: Rome, Italy.
  17. Ghermandi, A., Nunes, P.A., Portela, R., Nalini, R., & Teelucksingh, S. S. (2010). Recreational, cultural and aesthetic services from estuarine and coastal ecosystems. FEEM Working Paper No. 121.2009, http://dx.doi.org/10.2139/ssrn.1532803.
  18. Ghobadi, S., & Moridi, A. (2022). Economic valuation of water. Water and Irrigation Management, Articles in Press, doi: 10.22059/jwim.2022.342815.992. (In Persian).
  19. Haghdadi, M., Heshmati, Gh.A., & Azimi, M.S. (2018). Assessment of water yield service on the basis of InVEST tool (Case study: Delichai watershed). J of Water and Soil Conservation, 25(4), 275-290. (In Persian).
  20. Jafarzadeh, A. A., Mahdavi, A., FallahShamsi, R., & Yousefpour, R. (2019). Annual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran). Journal of Rangeland Science, 9(1), 1-12.
  21. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., Brumby, S.P. (2021). Global land use/land cover with sentinel 2 anddeep learning; IEEE: Manhattan, NY, USA: pp. 4704-4707.
  22. Liang, J., Li, S., Li, X., Li, X., Liu, Q., Meng, Q., & Li, J. (2021). Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279, 123851.
  23. López-Cubillos, S., Runting, R. K., Suárez-Castro, A. F., Williams, B. A., Armenteras, D., Ochoa-Quintero, J. M., & McDonald-Madden, E. (2022). Spatial prioritization to achieve the triple bottom line in Payment for ecosystem services design. Ecosystem Services, 55, 101424.
  24. Ma, S., Qiao, Y. P., Wang, L. J., & Zhang, J. C. (2021). Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. Forest Ecology and Management, 482, 118856.
  25. Management and Planning Organization of Kerman province. (2018). A selection of economic, social and cultural indices and indicators of Kerman province, Fall 2018. P. 43. (In Persian)
  26. Mansouri Daneshvar, M.R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: facts and statistics. Environ Syst Res,8 (7), 1-10.
  27. Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being. General Synthesis: a Report of the Millennium Ecosystem Assessment. Washington, DC: Island Press.
  28. Munoth, P., & Goyal, R. (2020). Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin India. Int J River Basin Manage, 18(2), 177-189. https://doi.org/10.1080/15715124.2019.1613413
  29. Pirikiya, M., Fallah, A., Amirnejad, H., & Mohamadi, J. (2021). Economic valuation of water production service in forest ecosystems (case study: Darabkola watershed). Ecology of Iranian Forest, 29 (18), 22-33. (In Persian).
  30. Plummer, M.L. (2009). Assessing benefit transfer for the valuation of ecosystem services. Front Ecol Environ., 7(1), 38-45, doi: 10.1890/080091.
  31. Resende, F. M., Cimon-Morin, J., Poulin, M., Meyer, L., Joner, D. C., & Loyola, R. (2021). The importance of protected areas and Indigenous lands in securing ecosystem services and biodiversity in the Cerrado. Ecosystem Services, 49, 101282.
  32. Sahidasht, A., & Abasnejad, A. (2011). Providing management solutions for underground water resources in the plains of Kerman province. Geotechnical Geology, 7(2), 131-146. (In Persian).
  33. Sharafatmandrad, M., & Khosravi Mashizi, A. (2021). Temporal and spatial assessment of supply and demand of the water-yield ecosystem service for water scarcity management in arid to semi-arid ecosystems. Water Resources Management, 35(1), 63-82.
  34. Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., ..., & Douglass, J. (2018). InVEST 3.2. 0 user’s guide. The Natural Capital Project.
  35. Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., & Verburg, P. (2020). Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degradation Development, 31, 1252-1264.
  36. Song, W., & Deng, X. (2017). Land-use/land-cover change and ecosystem service provision in China. Sci Total Environ., 576, 705-719.
  37. Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., & Zhang, Y. (2015). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. For Ecol Manage, 353, 269-279.
  38. Tahiru, A.A., Doke, D.A., & Baatuuwie, B.N. (2020). Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region. Ghana. Appl Water Sci., 10, 198. https://doi.org/10.1007/s13201-020-01272-6.
  39. Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Sharp, R., Nelson, E., ..., & Bernhardt, J. (2011). InVEST 2.2.2 user's guide: integrated valuation of ecosystem services and tradeoffs. The Natural Capital Project.
  40. (2010). The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Malta: Progress Press.
  41. Wu, C., Qiu, D., Gao, P., Mu, X., & Zhao, G. (2022). Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China. Journal of Arid Land, 14(4), 426-440.
  42. Yang, J., Xie, B., Zhang, D., & Tao, W. (2021). Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environmental Earth Sciences, 80(3), 1-12. https://doi.org/10.1007/s12665-020-09277-9
  43. Yang, X., Chen, R., Meadows, M. E., Ji, G., & Xu, J. (2020). Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply20(3), 1035-1045.
  44. Zhang, L. Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 701-708.
  45. Zhao, Y.R., Zhou, J.J., Lei, L., Xiang, J., Huang, M.H., Feng, W., Zhu, G.F., Wei, W., & Wang, J.A. (2019). Identification of water yield driving factors in the upper reaches of Shiyang River based on InVEST model. Chin J Ecol., 38(12), 3789-3799. https://doi.org/10.13292/j.1000-4890.201912.017.