A Review on Interaction Between Hydrodynamics and Organisms in River Turbulent Flow

Document Type : Research Paper


1 Shahid Beheshti university, Department of Civil, Water and Environment Engineering

2 Civil, Water and Environmental department, Shahid Beheshti University



Most of methods to determine environmental flow in Iran have been dealt with the required depth for movement of target species whilst that interaction of flow and turbulence in river morphology should be paid more attention. Flow turbulence could be of significance in rivers, however, it has rarely been considered in river restoration and habitat evaluation, due to its complexity. In this paper, attempts have been made to review the interaction between hydrodynamics and organisms and their measurements in rivers to signify the turbulence investigation in river management. In this concern turbulence properties related to the flow environment (i. e. inclusive, intensity, frequency and flow structures) have been studied. In addition, role of vegetation cover and organisms have been investigated in-depth in the flow structures. In this connection, potential threats and opportunities have been put forward for river wildlife conservation. With regards to limited knowledge of this topic in Iran, this research could enable scientists and practitioners to understand the challenges for interaction of turbulence and restoration, particularly ecologically, in rivers.


Main Subjects

  1. Adrian, R. J. (2005). Twenty years of particle image velocimetry. Exp Fluids, 39, 159-169.
  2. Adrian, R. J. (2007). Hairpin vortex organization in wall turbulence. Phys Fluids, 19(041301).
  3. Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. App Math Model, 39, 693-732.
  4. Asaeda, T., & Rashid, M. (2016). Effects of turbulence motion on the growth and physiology of aquatic plants. Limnologica. https://doi.org/10.1016/j.
  5. Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. US Geological Survey Professional Paper, 422.
  6. Best, J., Buffin-Bélanger, T., Kirkbride, A., & Reid, I. (2001). Visualization of coherent flow structures associated with particle clusters: temporal and spatial characterization revealed using ultrasonic Doppler velocity profiling. In Gravel-Bed Rivers 2000, NZ Hydrological Society.
  7. Blanckaert, K., Garcia, X. F., Ricardo, A. M., Chen, Q., & Pusch, M. (2013). The role of turbulence in the hydraulic environment of benthic invertebrates. Ecohydrology, 6, 700-712.
  8. Bradbrook, K., Biron, P., Lane, S., Richards, K., & Roy, A. (1998). Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol Process, 12, 1371-1396.
  9. Bradbrook, K. F., Lane, S. N., Richards, K. S., Biron, P. M., & Roy, A. G. (2000). Large eddy simulation of periodic flow characteristics at river channel confluences. Journal of Hydraulic Research, 38, 207-215.
  10. Brevis, W., Garcia-Villalba, M., & Nino, Y. (2014). Experimental and large Eddy simulation study of the flow developed by a sequence of lateral obstacles. Environ Fluid Mech, 14, 873-893.
  11. Buffin-Belanger, T., & Roy, A. G. (1998). Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river. Geomorphology, 25, 249-267.
  12. Chance, M., & Craig, D. (1986). Hydrodynamics and behaviour of Simuliidae larvae (Diptera. Can J Zool, 64, 1295-1309.
  13. Chanson, H. (2008, 2008). Acoustic Doppler velocimetry (ADV) in the field and in laboratory: practical experiences International Meeting on Measurements and Hydraulics of Sewers IMMHS’08, Summer School GEMCEA/LCPC,
  14. Clifford, N., & French, J. (1993). Monitoring and modelling turbulent flows: historical and contemporary perspectives (N. J. Clifford, H. French, Jr., & J, Eds.). John Wiley and.
  15. Clifford, N., Robert, A., & Richards, K. (1992). Estimation of flow resistance in gravel bedded rivers: a physical explanation of the multiplier of roughness length. Earth Surf Process Landf, 17, 111-126.
  16. Clifford, N. J., JR., F., & French, H. J. (1993). Turbulence: Perspectives on Flow and Sediment Transport. John Wiley and Sons.
  17. Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., & Kirkil, G. (2011). Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: insight provided by an eddyresolving numerical simulation. Water Resour Res, 47 05507.
  18. Cotel, A., & Webb, P. (2015). Living in a turbulent world-impacts on fish habitat choices and swimming. Integr Comp Biol 2015 (Vol. 55). Oxford University Press Inc Journals Department.
  19. Cotel, A. J., Webb, P. W., & Tritico, H. (2006). Do brown trout choose locations with reduced turbulence? Trans Am Fish Soc, 135, 610-619.
  20. Creutin, J., Muste, M., Bradley, A., Kim, S., & Kruger, A. (2003). River gauging using PIV techniques: a proof of concept experiment on the Iowa River. J Hydrol, 277, 182-194.
  21. Davidson, P. (2004). Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
  22. Deng, Z., Guensch, G. R., McKinstry, C. A., Mueller, R. P., Dauble, D. D., & Richmond, M. C. (2005). Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Can J Fish Aquat Sci, 62, 1513-1522.
  23. Duc, B. M., Wenka, T., & Rodi, W. (2004). Numerical modeling of bed deformation in laboratory channels. J Hydraul Eng, 130, 894-904.
  24. Enders, E. C., Boisclair, D., & Roy, A. G. (2003). The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar. Can J Fish Aquat Sci, 60, 1149-1160.
  25. Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech, 24, 395-458.
  26. Fenoglio, S., Boano, F., Bo, T., Revelli, R., & Ridolfi, L. (2013). The impacts of increasing current velocity on the drift of Simulium monticola (Diptera: Simuliidae): a laboratory approach. Ital J Zool, 80, 443-448.
  27. Ferguson, R., Kirkbride, A., & Roy, A. (1996). Markov analysis of velocity fluctuations in gravel-bed rivers (P. Ashworth, S. J. Bennett, J. L. Best, and S. McLelland, Eds.). John Wiley and Sons.
  28. Ferner, M. C., & Weissburg, M. J. (2005). Slow-moving predatory gastropods track prey odors in fast and turbulent flow. J Exp Biol, 208, 809-819.
  29. Fox, J., & Patrick, A. (2008). Large-scale eddies measured with large scale particle image velocimetry. Flow Meas Instrum, 19, 283-291.
  30. Garcia, C. M., Cantero, M. I., Nino, Y., & Garcia, M. H. (2005). Turbulence measurements with acoustic Doppler velocimeters. J Hydraul Eng, 131, 1062-1073.
  31. Gazzola, M., Argentina, M., & Mahadevan, L. (2014). Scaling macroscopic aquatic locomotion. Nat Phys, 10, 758-761.
  32. Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic Doppler velocimeter data. J Hydraul Eng, 128, 117-126.
  33. Green, J. C. (2005). Velocity and turbulence distribution around lotic macrophytes. Aquat Ecol, 39, 01-10.
  34. Hardy, R. J., Best, J. L., Lane, S. N., & Carbonneau, P. E. (2009). Coherent flow structures in a depth-limited flow over a gravel surface: the role of near-bed turbulence and influence of Reynolds number. J Geophys Res Earth, 114:F01003.
  35. Hardy, R. J., Lane, S. N., Ferguson, R. I., & Parsons, D. R. (2007). Emergence of coherent flow structures over a gravel surface: a numerical experiment. Water Resour Res, 43, 03422.
  36. Hart, D. D., Clark, B. D., & Jasentuliyana, A. (1996). Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnol Oceanogr, 41, 297-308.
  37. Hart, D. D., & Fineli, C. M. (1999). Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu Rev Ecol Syst, 30, 363-395.
  38. Harvey, G. L., & Clifford, N. J. (2009). Microscale hydrodynamics and coherent flow structures in rivers: implications for the characterization of physical habitat. River Res Appl, 25, 160-180.
  39. Havskum, H., Hansen, P. J., & Berdlet, E. (2005). Effect of turbulence on sedimentation and net population growth of the dinoflagellate Ceratium tripos and interactions with its predator. Fragilidium subglobosum. Limnol Oceanogr, 50, 1543-1551.
  40. Higham, T. E., Stewart, W. J., & Wainwright, P. C. (2015). Turbulence, temperature, and turbidity: the ecomechanics of predator-prey interactions in fishes. Integr Comp Biol, 55, 6-20.
  41. Hockley, F. A., Wilson, C., Brew, A., & Cable, J. (2014). Fish responses to flow velocity and turbulence in relation to size, sex and parasite load. J R Soc Interface, 11(20130814).
  42. Jimenez, J. (2011). Cascades in wall-bounded turbulence. Annu Rev Fluid Mech, 44, 27-45.
  43. Joensuu, L., Pekcan-Hekim, Z., Hellen, N., & Horpila, J. (2013). Turbulence disturbs vertical refuge use by Chaoborus flavicans larvae and increases their horizontal dispersion. Freshw Biol, 58, 1997-2006.
  44. Johnson, M. F., E, T. R., Dijkstra, J. T., Paul, M., Penning, W. E., Rice, S. P., Rice, S. P., & McLelland, S. (2014). Using surrogates, including scaling issues, in laboratory flumes and basins. CRC Press.
  45. Lacey, R. W. J., Neary, V. S., Liao, J. C., Enders, E. C., & Tritico, H. M. (2012). The IPOS Framework: linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res Appl, 28, 429-443.
  46. Lacey, R. W. J., & Roy, A. G. (2008). Fine-scale characterization of the turbulent shear layer of an instream pebble cluster. J Hydraul Eng, 134, 925-936.
  47. Lamarre, H., & Roy, A. G. (2005). Reach scale variability of turbulent flow characteristics in a gravel-bed river. Geomorphology, 68, 95-113.
  48. Lane, S., Biron, P., Bradbrook, K., Butler, J., Chandler, J., Crowell, M., McLelland, S., Richards, K., & Roy, A. (1998). Three dimensional measurement of river channel flow processes using acoustic Doppler velocimetry. Earth Surf Process Landf, 23, 1247-1267.
  49. Lane, S., Bradbrook, K., Richards, K., Biron, P., & Roy, A. (1999). The application of computational fluid dynamics to natural river channels: three-dimensional versus two dimensional approaches. Geomorphology, 29, 1-20.
  50. Leeder, M. R. (1983). On the dynamics of sediment suspension by residual Reynolds stresses—confirmation of Bagnold’s theory. Sedimentology, 40, 485-491.
  51. Legleiter, C. J., Phelps, T. L., & Wohl, E. E. (2007). Geostatistical analysis of the effects of stage and roughness on reachscale spatial patterns of velocity and turbulence intensity. Geomorphology, 83, 322-345.
  52. Li, Y., Wang, Y., Anim, D. O., Tang, C., Du, W., Ni, L., Yu, Z., & Acharya, K. (2014). Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants. Geomorphology, 204, 314-324.
  53. Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc Lond B Biol Sci, 362, 1973-1993.
  54. Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003). Fish exploiting vortices decrease muscle activity. Science, 302, 1566-1569.
  55. Liao, J. C., & Cotel, A. (2013). Effects of turbulence on fish swimming in aquaculture (A. P. Palstra and J. V. Planas, Eds.). Springer.
  56. Lu, S., & Willmarth, W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech, 60, 481-511.
  57. Lupandin, A. (2005). Effect of flow turbulence on swimming speed of fish. Biol Bull, 32, 461-466.
  58. MacVicar, B., & Roy, A. (2007). Hydrodynamics of a forced riffle pool in a gravel bed river: 2. Scale and structure of coherent turbulent events. Water Resour Res, 43, 12402.
  59. Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71-84.
  60. Maia, A., Sheltzer, A. P., & Tytell, E. D. (2015). Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus. J Exp Biol, 218, 786-792.
  61. Maia, A., & Wilga, C. (2016). Dorsal fin function in spiny dogfish during steady swimming. J Zool, 298, 139-149.
  62. Marjoribanks, T. I., Hardy, R. J., Lane, S. N., & Parsons, D. R. (2016). Does the canopy mixing layer model apply to highly flexible vegetation? Insights from numerical modelling. Environ Fluid Mech, 16, 1-25.
  63. McKenzie, D., & Claireaux, G. (2010). The effects of environmental factors on the physiology of aerobic exercise (P. Domenici and B. Kapoor, Eds.). CRC Press.
  64. McLelland, S. J., & Nicholas, A. P. (2000). A new method for evaluating errors in high frequency ADV measurements. Hydrol Process, 14, 351-366.
  65. Morris, M., Mohammadi, M. H., Day, S., Hondzo, M., & Sotiropulus, F. (2015). Prediction of Glossosoma biomass spatial distribution in Valley Creek by field measurements and a three-dimensional turbulent open channel flow model. Water Resour Res, 51, 1457-1471.
  66. Munoz-Mas, R., Martinez-Caperl, F., Alcaraz-Hernandez, J. D., & Mouton, A. (2015). Can multilayer perceptron ensembles model the ecological niche of freshwater fish species? Ecol Model, 309, 72-81.
  67. Naden, P., Rameshwaran, P., Mountford, O., & Robertson, C. (2006). The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrol Process, 20, 3915-3938.
  68. Nepf, H. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res, 35, 479-489.
  69. Nepf, H., & Vivoni, E. (2000). Flow structure in depth-limited, vegetated flow. J Geophys Res Oceans, 105, 28547-28557.
  70. Nepf, H. M. (2012). Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech, 44, 123-142.
  71. Newson, M., & Newson, C. (2000). Geomorphology, ecology and river channel habitat: mesoscale approaches to basinscale challenges. Prog Phys Geogr, 24, 195-217.
  72. Nezu, I., & Nakagawa, H. (1995). Turbulence measurements in unsteady free-surface flows. Flow Meas Instrum, 6, 49-59.
  73. Nikora, V. (2010). Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl, 26, 367-384.
  74. Nikora, V., Aberle, J., Biggs, B., Jowett, I., & Sykes, J. (2003). Effects of fish size, time-to-fatigue and turbulence on swimming performance: a case study of Galaxias maculatus. J Fish Biol, 63, 1365-1382.
  75. Odeh, M., Noreika, J., Haro, A., Maynard, A., Castro-Santos, T., & Cada, G. (2002). Evaluation of the effects of turbulence on the behavior of migratory fish. Report prepared for U.S. In Department of Energy, Bonneville Power Administration, and Division of Fish and Wildlife (pp. –00000022–00000021).
  76. Ortiz, A. C., Ashton, A., & Nepf, H. (2013). Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geophys Res Earth, 118, 2585-2599.
  77. Pardo, I., Alvarez, M., Casas, J., Moreno, J., Vivas, S., Bonada, N., Alba-Tercedor, J., Jaimez-Cuellar, P., Moya, G., & Prat, N. (2002). The habitat of the Mediterranean rivers. Design of the habitat diversity index. Limnetica, 21, 115-133.
  78. Perks, J. (2017, 2017). Filming freshwater fish (presentation Institute of Fisheries Management Greater London and SE Branch Meeting, 1st February 2017,
  79. Pope, N., Widdows, J., & Brinsley, M. (2006). Estimation of bed shear stress using the turbulent kinetic energy approach a comparison of annular flume and field data. Cont Shelf Res, 26, 959-970.
  80. Przybilla, A., Kunze, S., Rudert, A., Bleckmann, H., & Brucker, C. (2010). Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol, 213, 2976-2986.
  81. Ramon, C., Prats, J., & Rueda, F. (2015). Simulation of turbulent flows in river confluences and meandering channels with a Cartesian 3D free surface hydrodynamic model. Int J Comput Methods, 12(1550035).
  82. Raven, P., Holmes, N., Dawson, F., & Everard, M. (1998). Quality assessment using River Habitat Survey data. Aquat Conservat Mar Freshwat Ecosyst, 8, 477-499.
  83. Rhoads, B. L., & Sukhodolov, A. N. (2004). Spatial and temporal structure of shear layer turbulence at a stream confluence. Water Resour Res, 40, W06304.
  84. Rice, S.P., Buffin-Belanger, T., Lancaster, J., & Reid, I. (2008). Movements of a macroinvertebrate species across a gravelbed substrate: effects of local hydraulics and microtopography under increasing discharge (H. Habersack, H. Piegay, and M. Rinaldi, Eds.). From Process Understanding to River Restoration.
  85. Richards, K. S. (1979). Stochastic processes in one-dimensional series: an introduction. Geo Abstracts, University of East Anglia.
  86. Rinaldi, M., Belletti, B., Bund, W., Bertoldi, W., Gurnell, A., Bujse, T., & Mosselman, E. (2013). Review on ecohydromorphological methods. Deliverable, D1(1), 2007-2013. http://www.reformrivers.eu/deliverables/d1-1.
  87. Rodi, W., Constantinescu, G., & Stoesser, T. (2013). Large-Eddy Simulation in Hydraulics. CRC Press.
  88. Rothschild, B., & Osborn, T. (1988). Small-scale turbulence and plankton contact rates. J Plankton Res, 10, 465-474.
  89. Roy, A.G., Buffin-Belanger, T., & Deland, S. (1996). Scales of turbulent coherent flow structures in a gravel-bed river (P. Ashworth, S. J. Bennett, J. L. Best, and S. McLelland, Eds.). John Wiley and Sons.
  90. Roy, A. G., Buffin-Belanger, T., Lamarre, H., & Kirkbride, A. D. (2004). Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river. J Fluid Mech, 500, 1-27.
  91. Rusello, P. J., Lohrmann, A., Siegel, E., & Maddux, T. (2006, 2006/9/10). Improvements in acoustic Doppler velocimetery 7th International Conference on Hydroscience and Engineering (ICHE-2006,
  92. Sand-Jensen, K., & Pedersen, O. (1999). Velocity gradients and turbulence around macrophyte stands in streams. Freshw Biol, 42, 315-328.
  93. Shaw, E. (1978). Schooling fishes: the school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants. Am Sci, 66, 166-175.
  94. Shuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I., & Hölker, F. (2012). The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquatic Sci, 74, 637-657.
  95. Shvidchenko, A. B., & Pender, G. (2001). Macroturbulent structure of open-channel flow over gravel beds. Water Resour Res, 37, 709-719.
  96. Silva, A. T., Katopodis, C., Santos, J. M., Ferreira, M. T., & Pinheiro, A. N. (2012). Cyprinid swimming behaviour in response to turbulent flow. Ecol Eng, 44, 314-328.
  97. Silva, A. T., Santos, J. M., Ferreira, M. T., Pinheiro, A. N., & Katopodis, C. (2011). Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner 1864) in an experimental pooltype fishway. River Res Appl, 27, 360-373.
  98. Siniscalchi, F., Nikora, A. V. I., & J. (2012). Plant patch hydrodynamics in streams: mean flow, turbulence, and drag forces. Water Resour Res, 4, W01513.
  99. Smith, D. L., Goodwin, R. A., & Nestler, J. M. (2014). Relating turbulence and fish habitat: a new approach for management and research. Rev Fish Sci Aquaculture, 22, 123-130.
  100. Soluk, D. A., & Craig, D. A. (1988). Vortex feeding from pits in the sand: a unique method of suspension feeding used by a stream invertebrate. Limnol Oceanogr, 33, 638-645.
  101. Soluk, D. A., & Craig, D. A. (1990). Digging with a vortex: flow manipulation facilitates prey capture by a predatory stream mayfly. Limnol Oceanogr, 35, 1201-1206.
  102. Standen, E., & Lauder, G. (2007). Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis. J Exp Biol, 210, 325-339.
  103. Statzner, B., Gore, J. A., & Resh, V. H. (1988). Hydraulic stream ecology: observed patterns and potential applications. J North Am Benthol Soc, 7, 307-360.
  104. Stewart, R. L., & Fox, J. F. (2015). Role of macroturbulence to sustain turbulent energy in decelerating flows over a gravel bed. Geomorphology, 248, 147-160.
  105. Sulaiman, M., Sinnakaudan, S., & Shukor, M. (2013). Near bed turbulence measurement with acoustic doppler velocimeter (ADV. KSCE J Civil Eng, 17, 1515-1528.
  106. Svendsen, J. C., Skov, J., Bildsoe, M., & Steffensen, J. F. (2003). Intraschool positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions. J Fish Biol, 62, 834-846.
  107. Taylor, G. I. (1938, 1938). The spectrum of turbulence Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
  108. Thomas, R. E., Johnson, M. F., Frostick, L. E., Parsons, D. R., Bouma, T. J., Dijkstra, J. T., Eiff, O., Gobert, S., Henry, P. Y., & Kemp, P. (2014). Physical modelling of water, fauna and flora: knowledge gaps, avenues for future research and infrastructural needs. J Hydraul Res, 52, 311-325.
  109. Thompson, D. M., Nelson, J. M., & Wohl, E. E. (1998). Interactions between pool geometry and hydraulics. Water Resour Res, 34, 3673-3681.
  110. Thomson, J., Clark, B., Fingerut, J., & Hart, D. (2004). Local modification of benthic flow environments by suspensionfeeding stream insects. Oecologia, 140, 533-542.
  111. Tonetto, A. F., Cardoso-Leite, R., Novaes, M. C., & Guillermo-Ferreira, R. (2015). The relationship between macroalgal morphological complexity and hydraulic conditions in stream habitats. Hydrobiologia, 747, 33-41.
  112. Tonetto, A. F., Cardoso-Leite, R., Peres, C. K., Bispo, P. D. C., & Branco, C. C. Z. (2014). The effects of habitat complexity and hydraulic conditions on the establishment of benthic stream macroalgae. Freshw Biol, 59, 1687-1694.
  113. Tonina, D., & Jorde, K. (2013). Hydraulic modelling approaches for ecohydraulic studies: 3D, 2D, 1D and nonnumerical models (I. Maddock, A. Harby, P. Kemp, and P. Wood, Eds.). John Wiley and Sons Ltd.
  114. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79, 61-78.
  115. Tritico, H., & Cotel, A. (2010). The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus. J Exp Biol, 213, 2284-2293.
  116. Tritico, H., Cotel, A., & Clarke, J. (2007). Development, testing and demonstration of a portable submersible miniature particle imaging velocimetry device. Meas Sci Technol, 18(2555).
  117. Tullos, D., & Walter, C. (2015). Fish use of turbulence around wood in winter: physical experiments on hydraulic variability and habitat selection by juvenile coho salmon, Oncorhynchus kisutch. Environ Biol Fishes, 98, 1339-1353.
  118. Vogel, S. (1994). Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.
  119. Voulgaris, G., & Trowbridge, J. H. (1998). Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Oceanic Tech, 15, 272-289.
  120. Warhaft, Z. (2002). Turbulence in nature and in the laboratory. Proc Natl Acad Sci, 99, 2481-2486.
  121. Webb, P., Cotel, A., Waves, M. L., Eddies, E. o. F. B., & Distribution, H. (2010). Fish Locomotion: An Eco-Ethological Perspective. Science Publishers.
  122. Wilcox, A. C., & Wohl, E. E. (2007). Field measurements of threedimensional hydraulics in a step-pool channel. Geomorphology, 83, 215-231.
  123. Wilkes, M. (2014). The Hydrodynamics of River Ecosystems:Towards an Objective and Ecologically Relevant Classification of Mesohabitats. University of Worcester.
  124. Wilkes, M. A., Maddock, I., Visser, F., & Acreman, M. C. (2013). Incorporating hydrodynamics into ecohydraulics: the role of turbulence in the swimming performance and habitat selection of stream-dwelling fish (I. Maddock, A. Harbym, P. Kemp, and P. Wood, Eds.). John Wiley and Sons.
  125. Wilson, C., Stoesser, T., Bates, P., & Pinzen, A. B. (2003). Open channel flow through different forms of submerged flexible vegetation. J Hydraul Eng, 129, 847-853.
  126. Wu, W., Rodi, W., & Wenka, T. (2000). 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng, 126, 4-15.